CERAMIC RESONATOR SPECIFICATION

1. SCOPE

This specification shall cover the characteristics of the ceramic resonator with 12.0MHz for the clock oscillation of microprocessor etc.

2. PART NO: ZTTCV12.00MT

3.ELECTRICAL SPECIFICATION

No	Item	Requirements			
3.1	Oscillation Frequency (Fosc)	12.00MHz±0.5%			
3.2	Resonant Impedance (Ro)	≤ 25 Ω			
3.3	Temperature Coefficient of	$\pm 0.4\%$ max (-20°C to +80°C)			
	Oscillation Frequency				
3.4	Withstanding Voltage	100V D.C. 5sec.max			
3.5	Rating Voltage				
	(1) D.C. Voltage	6V D.C.			
	(2) A.C. Voltage	15 V-pp.			
3.6	Insulation Resistance	100M Ω min. (at 10V D.C.)			
3.7	Operating Temperature	-20°C to +80°C			
3.8	Storage Temperature	-55°C to +85°C			
3.9	Aging Rate (Fosc)	$\pm 0.3\%$ max (10 year)			

4. MEASUREMENT

4.1 Measurement Condition

The reference temperature shall be $25^{\circ}\text{C} \pm 2^{\circ}\text{C}$. The measurement shall be performed at the temperature range of 5°C to 35°C unless otherwise the result is doubtful.

4.2 Measurement Circuit and Equipment

Oscillating frequency shall be measured by the standard test circuit as shown in Fig.1

Resonant impedance shall be measured by HP8751A Network Analyzer.

4.3 TEST CIRCUIT

5. DIMENSIONS

	Dimensions (mm)								
P/N	L	W	Н	P1	P2	T			
ZTTCVMT	3.7 ± 0.2	3.1±0.2	1.2±0.3	0.9 ± 0.3	0.7 ± 0.3	1.5±0.2			

6. PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS

No	Item	Condition of Test	Performance			
			Requirements			
6.1	Humidity	Keep the resonator at $40\pm2^{\circ}\mathbb{C}$ and	It shall fulfill the			
		90-95% RH for 96 ± 4 hours. Then release the	specifications in Table			
		resonator into the room condition for 1 hour	1.			
		prior to the measurement.				
6.2	Vibration	Subject the resonator to vibration for 2 hours	It shall fulfill the			
		each in x.y and z axis with the amplitude of	specifications in Table			
		1.5mm, the frequency shall be varied	1.			
6.3	Mechanical	uniformly between the limits of 10—55Hz	It shall fulfill the			
0.3	Shock	Drop the resonator randomly onto a concrete floor from the height of	specifications in Table			
	SHOCK	100 cm 3 times.	1.			
6.4	Resistance to	Dip the resonator terminals no closer than 2	It shall fulfill the			
0	Solder Heat	mm into the solder bath	specifications in Table			
		260 ± 5 °C for 10 ± 1 sec., then release it into	1.			
		the room condition for 1 hour prior to the				
		measurement.				
6.5	Solderability	Dip the resonator terminals no closer than 2	More than 95% of the			
		mm into the solder bath at	terminal surface of the			
		230 ± 5 °C for 3 ± 0.5 sec.	resonator shall be			
			covered with fresh			
6.6	III.al.	C 1: +4	solder. It shall fulfill the			
6.6	High Temperature	Subject the resonator to $80\pm5^{\circ}$ C for 96 ± 4 hours. Then release the resonator into the	specifications in Table			
	Exposure	specifications in Table 1.				
	Laposure	room conditions for 1 hour prior to the measurement.	1.			
6.7	Low	Subject the resonator to -20 ± 5 °C for 96 ± 4	It shall fulfill the			
	Temperature	hours. Then release the resonator into the	specifications in Table			
	1	room conditions for 1 hour prior to the	1.			
		measurement.				
6.8	Temperature	Subject the resonator to −20°C for 30 min.	It shall fulfill the			
	Cycling	specifications in Table				
		followed by a high temperature of 85°C for 30 min. Cycling shall be repeated 5 times	1.			
		with a transfer time of 15 sec.at the room				
		condition. Then release the resonator into the				
		room temperature for 1 hour prior to the				
		measurement.				

6. PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS (Continued from the preceding page)

No	Item	Condition of Test	Performance
			Requirements
6.9	Lead Fatigue (1) Pulling Test	Weight along with the direction of terminals without any shock 0.5 kg for $10\pm 1 \text{ sec.}$	The resonator shall show no evidence of damage and shall
	(2) Bending Test	Lead shall be subject to withstand against 90 degree bending at its stem. This operation shall be done towards both direction.	fulfill all the initial electric characteristics.

TABLE1

TABLET							
Item	Specification						
Oscillation Frequency Change	△F/Fosc≤0.5% max						
Resonant Impedance	∆Ro≤5Ω						

Tape Dimension (mm)

	таре ц	Jilliensio	H (HIIII)											
	A	В	C	D	Е	F	G ±	Н	ØJ	ØN	M	R	K	Τ±
	± 0.2	± 0.2	± 0.3	± 0.1	± 0.1	± 0.1	0.1	± 0.1	± 0.1	± 0.1	max	max	± 0.2	0.1
MG	3.8	7.8	16.0	7.5									2.1	
MT	5.0	4.4	12.0	5.5	1.75	8.0	4.0	2.0	1.5	1.6	10°	0.3	1.8	0.3
MX	3.4	4.0	12.0	5.5									1.3	

ØA	ØB	W	Т	Pieces per reel	Carrier tape size
179±2	60 typ	12.4min	19.4max	1000typ.	12
179±2	60 typ	16.4min	22.4max	1000typ.	16
330±3	80 min	12.4min	19.4max	4000typ.	12
330±3	80 min	16.4min	22.4max	4000typ.	16