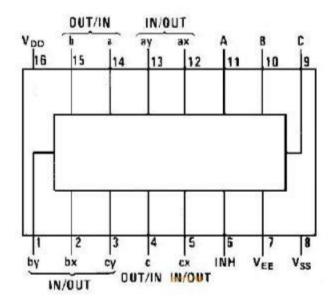


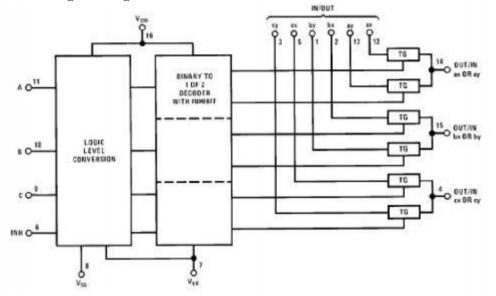
Three 2 choose 1 bidirectional analog switch

summary


CD 405X series analog switches are designed using digital signals to control multiple modulated / select analog switches with low conduction resistance and very low cut-off leakage current. Digital signals with amplitude value of 4.5 V to 18V can control analog signals with peak value of 18 V. For example, select VDD= + 5V, Vss=0V, VEE = -13.5V, then the digital signal of 0^{5V} can control-13.5⁴.5V analog signal, these switching circuits have very low static power consumption in the entire VDD-VSS and VDD-VEE power range.

CD 4053 is a three sets of two choose 1 two-way analog switch, equivalent to three sets of single knife double throw switches. It has three sets of independent binary digital control inputs A, B, C and INH suppression input, and the binary digital control signal can put any one of the two analog channels into the conduction state. I NH input "1" normally puts all channels of 3 groups 2 select 1 analog switch into off state, and input "0" normally puts all channels of 3 groups 2 select 1 analog switch into on state.

main features


Due to the very wide digital control and transmission of analog signal voltage range: digital 4.5V $^{\sim}18V$, analog 18V; Due to low on-on resistance: 80 Ω (VDD-VEE =15V, signal greater than 15Vpp); Due to the very low static voltage power consumption; Due to high-off resistance; Switch the analog signal at 18Vpp due to the logic level conversion of the digital address signal from 4.5 V to 18 V; Because of the built-in binary address decoder.

Foot description (top view)

CD 4053 logic diagram:

truth table:

Input, status		Output
INH	A, or, B, or, C	Output, situation
0	0	A. ax or bx or cx
0	1	A y or by or cy
1	×	No ne

absolute rating:

number	Described, described		extreme	Single, position
VDD	The DC current, the source voltage		-0.5~+18	V
VI N	Input, voltage		-0.5~VDD +0.5	V
Tstg	Package the operating temperature range		0—70	°C
		DI P	700	m W
Ptot	Work, consump tion	S OP	500	m W
TL	welding temperature		260	°C

Recommended working conditions:

Fu, number	Described, described	extreme	Single, position
VDD	The DC current, the source voltage	+5~+15	V
VI N	Input, voltage	0~VDD	V

DC parameters:

a umb a 1	nnoiset		ondition		+25℃		
symbol	project	condition		least value	represe ntative value	crest value	unit
		VDD)=5V			5	
I DD		VDD	=10V			10	uA
			=15V			20	
Signal inpu	it VIS and output V	OS	1	1			1
			VDD =2.5V VEE = -2.5V or VDD =5V VEE=0V		270	1050	
R ON	On-on resistance (peak VEE VIS VDD)	R L = 10 KΩ (either channel)	VDD=5V VEE = -5V or VDD=10V VEE=0V		120	400	Ω
			VDD =7.5V VEE = -7.5V or VDD=15V VEE=0V		80	240	-
			VDD =2.5V VEE = -2.5V or VDD =5V VEE=0V		10		
△RON	Oon resistance gain between any two channels	R L = 10 KΩ (either channel)	VDD=5V VEE = -5V or VDD=10V VEE=0V		10		Ω

	VDD =7.5V VEE = -7.5V or VDD=15V VEE=0V	5		
Off-state channel leakage current, any channel is in the off-state	VDD =7.5V, VEE=-7.5V 0/I=± 7.5V , I /0 =0V	±0.01	±50	n A
Off-state channel leakage current, and all channels are in the off- state	INH =7.5V	±0.02	±200	n A
Control the inputs A, B, C, a	nd INH			

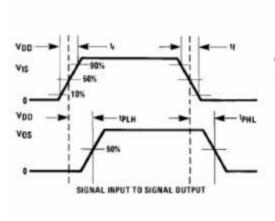
	-						
		VEE=VSS	VDD=5V			1.5	
VI L	Low level input	RL =1KΩ All pass,	VDD=10V			3.0	V
	Electricit y, pressure	the road is pass form	VDD=15V			4.0	
		VDD	=5V	3.5			
VI H	high-level	VDD=	=10V	7			V
	input Electricit y, pressure	VDD=	=15V	11			
T TN	Innut	VDD=15V	VIN=OV		-10-5	-0.1	
I IN	Input, current	VEE=0V	VIN=15V		10-5	0.1	uA

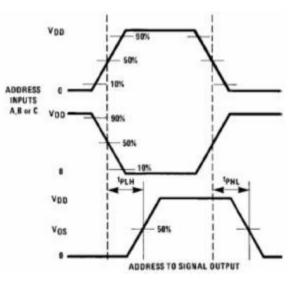
AC current parameters:

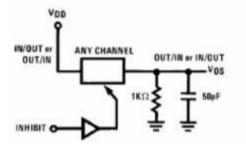
symbol	Item, eye	condition	VD D	least value	represe ntative value		unit
t PZH	Transmission delay	VEE =VSS =OV	5V		600	1200	
t PZL	time from forbidden	$RL = 1K \Omega$	10V		225	450	ns
	to signal output	CL =50pF	15V		160	320	
	(open channel)						
t PHZ	Transmission delay	VEE =VSS =OV	5V		210	420	
t PLZ	time from forbidden	$RL = 1K \Omega$	10V		100	200	n s
	to signal output	CL =50pF	15V		75	150	

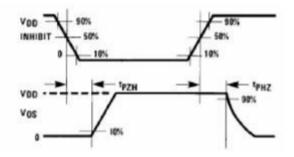
CD 4053

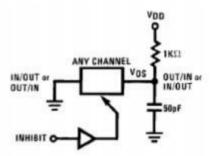
	(closed channel)					
C in	Input,	Control, input		5	7.5	- F
0 111	capacitance	Signal, input		10	15	рF
Cout	Output capacitance (total input / output) VEE=VSS=OV		10V	8		рF
C IOS	Bypass, capacitance			0.2		рF


C PO	Power supply dissipation capacitance			70		рF
Signal in	put VIS and output VOS					
	Sine-wave distortion degree	RL =10KΩ fIS=1KHz VIS =5Vp-p VEE=VSI=0V	10V	0.04		%
	Sine-wave wave frequency response	RL =1KΩ VEE =0V VIS=5Vp-p 201og 10VOS /VIS=- 40dB	10V	40		MHz
	Cross-state crosstalk frequency	RL =1KΩ VEE =0V VIS=5Vp-p 201og 10VOS /VIS=- 40dB	10V	10		MHz
	Signal crosstalk frequency	RL =1KΩ VEE =0V VIS=5Vp-p 20log 10VOS /VIS=- 40dB	10V	3		MHz
			5V	25	55	
t PHL t PLH	Transmission delay of the	VEE =VSS =OV CL =50pF	10V	15	35	
	signal input to the output		15V	10	25	ns
Control tl	ne inputs A, B, C, and	INH		L		I
	Control the input to the signal response	VEE =VSS =OV RL=10KΩ Enter at the end of all channels Square-wave amplitude of 10V	10V	65		m V
			5V	500	1000	
t PHL t PLH	propagation delay time From the address to	VEE =VSS =OV	10V	160	350	ns
	the signal output channel	CL =50pF	15V	120	240	


For either on or


off




oscillogram:

