## Three 2 choose 1 bidirectional analog switch

summar y
CD 405X series analog switches are designed using digital signals to control multiple modulated / select analog switches with low conduction resistance and very low cut-off leakage current. Digital signals with amplitude value of 4.5 V to 18 V can control analog signals with peak value of 18 V . For example, select $\mathrm{VDD}=+5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, $\mathrm{VEE}=-13.5 \mathrm{~V}$, then the digital signal of $0^{\sim} 5 \mathrm{~V}$ can control $-13.5^{\sim} 4.5 \mathrm{~V}$ analog signal, these switching circuits have very low static power consumption in the entire VDD-VSS and VDD-VEE power range.

CD 4053 is a three sets of two choose 1 two-way analog switch, equivalent to three sets of single knife double throw switches. It has three sets of independent binary digital control inputs A, B, C and INH suppression input, and the binary digital control signal can put any one of the two analog channels into the conduction state. I NH input " 1 " normally puts all channels of 3 groups 2 select 1 analog switch into off state, and input " 0 " normally puts all channels of 3 groups 2 select 1 analog switch into on state.

## main features

Due to the very wide digital control and transmission of analog signal voltage range: digital $4.5 \mathrm{~V}{ }^{\sim} 18 \mathrm{~V}$, analog 18 V ;
Due to low on on resistance: $80 \Omega$ (VDD-VEE $=15 \mathrm{~V}$, signal greater than 15 Vpp );
Due to the very low static voltage power consumption;
Due to high-off resistance;
Switch the analog signal at 18 Vpp due to the logic level conversion of the digital address signal from 4.5 V to 18 V ;
Because of the built-in binary address decoder.
Foot description (top view)


CD 4053 logic diagram:

truth table:

| Input, status |  | Output, <br> situation |
| :---: | :---: | :---: |
| INH | A, or, B, or, C |  |
| 0 | 0 | A y or by or cy |
| 0 | 1 | No ne |
| 1 | $\times$ |  |

absolute rating:

| number | Described, <br> described | extreme | Single, <br> position |
| :---: | :---: | :---: | :---: |
| VDD | The DC current, <br> the source <br> voltage | $-0.5 \sim+18$ | V |
| VI N | Input, voltage | $-0.5 \sim$ VDD +0.5 | V |
| Tstg | Package the <br> operating <br> temperature range | $0-70$ | ${ }^{\circ} \mathrm{C}$ |
| Ptot | Work, <br>  <br> consump <br> tion | SI P OP | 700 |
| T L | welding <br> temperature | 260 | m W |

Recommended working conditions:

| Fu, <br> number | Described, <br> described | extreme | Single, <br> position |
| :--- | :---: | :---: | :---: |
| VDD | The DC current, <br> the source <br> voltage | $+5 \sim+15$ | V |
| VI N | Input, voltage | $0 \sim$ VDD | V |

DC parameters:

| symbol | project | condition | $+25^{\circ} \mathrm{C}$ |  |  | unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | least value | represe ntative value | crest <br> value |  |
| I DD |  | $\mathrm{VDD}=5 \mathrm{~V}$ |  |  | 5 | uA |
|  |  | VDD $=10 \mathrm{~V}$ |  |  | 10 |  |
|  |  | $\mathrm{VDD}=15 \mathrm{~V}$ |  |  | 20 |  |

Signal input VIS and output VOS

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |



Control the inputs A, B, C, and INH

| VI L | Low level input <br> Electricit y, pressure | $\begin{aligned} & \mathrm{VEE}=\mathrm{VSS} \\ & \mathrm{RL}=1 \mathrm{~K} \Omega \end{aligned}$ <br> All pass, the road is pass <br> form | $\mathrm{VDD}=5 \mathrm{~V}$ |  |  | 1.5 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{VDD}=10 \mathrm{~V}$ |  |  | 3.0 |  |
|  |  |  | $\mathrm{VDD}=15 \mathrm{~V}$ |  |  | 4. 0 |  |
| VI H | high-level input <br> Electricit y, pressure | $\mathrm{VDD}=5 \mathrm{~V}$ |  | 3.5 |  |  | V |
|  |  | VDD $=10 \mathrm{~V}$ |  | 7 |  |  |  |
|  |  | $\mathrm{VDD}=15 \mathrm{~V}$ |  | 11 |  |  |  |
| I IN | Input, current | $\mathrm{VDD}=15 \mathrm{~V}$ | $\mathrm{VIN}=0 \mathrm{~V}$ |  | -10-5 | -0.1 | uA |
|  |  | $\mathrm{VEE}=0 \mathrm{~V}$ | $\mathrm{VIN}=15 \mathrm{~V}$ |  | 10-5 | 0.1 |  |

AC current parameters:

| symbol | Item, eye | condition | VD D | least <br> value | represe ntative value | crest <br> value | unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{t} \mathrm{PZH} \\ \mathrm{t} \text { PZL } \end{gathered}$ | Transmission delay time from forbidden to signal output (open channel) | $\begin{gathered} \text { VEE }=\mathrm{VSS}=0 \mathrm{~V} \\ \text { RL }=1 \mathrm{~K} \Omega \\ \mathrm{CL}=50 \mathrm{pF} \end{gathered}$ | 5 V |  | 600 | 1200 | n s |
|  |  |  | 10V |  | 225 | 450 |  |
|  |  |  | 15 V |  | 160 | 320 |  |
| $\begin{aligned} & \mathrm{t} \text { PHZ } \\ & \mathrm{t} \text { PLZ } \end{aligned}$ | Transmission delay time from forbidden to signal output | $\begin{aligned} \text { VEE } & =\text { VSS }=0 \mathrm{~V} \\ \text { RL } & =1 \mathrm{~K} \Omega \\ \mathrm{CL} & =50 \mathrm{pF} \end{aligned}$ | 5 V |  | 210 | 420 | n s |
|  |  |  | 10V |  | 100 | 200 |  |
|  |  |  | 15 V |  | 75 | 150 |  |



| C P0 | Power supply <br> dissipation <br> capacitance |  |  | 70 | p F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Signal input VIS and output VOS

|  | Sine-wave distortion degree | $\begin{aligned} & \mathrm{RL}=10 \mathrm{~K} \Omega \\ & \mathrm{fIS}=1 \mathrm{KHz} \quad \text { VIS }=5 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{VEE}=\mathrm{VSI}=0 \mathrm{~V} \end{aligned}$ | 10V | 0. 04 |  | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sine-wave wave frequency response | $\begin{gathered} \text { RL }=1 \mathrm{~K} \Omega \\ \text { VEE }=0 \mathrm{~V} \quad \text { VIS=5Vp-p } \\ \text { 201og } 10 \mathrm{VOS} / \mathrm{VIS}=- \\ 40 \mathrm{~dB} \end{gathered}$ | 10V | 40 |  | MHz |
|  | Cross-state <br> crosstalk <br> frequency | $\begin{aligned} & \text { RL }=1 \mathrm{~K} \Omega \\ & \text { VEE }=0 \mathrm{~V} \quad \text { VIS=5Vp-p } \\ & \text { 201og } 10 \mathrm{VOS} / \mathrm{VIS}=- \\ & \text { 40dB } \end{aligned}$ | 10V | 10 |  | MHz |
|  | Signal crosstalk frequency | $\begin{gathered} \text { RL }=1 \mathrm{~K} \Omega \\ \text { VEE }=0 \mathrm{~V} \quad \text { VIS=5Vp-p } \\ \text { 201og } 10 \mathrm{VOS} / \mathrm{VIS}=- \\ 40 \mathrm{~dB} \end{gathered}$ | 10V | 3 |  | MHz |
| $\begin{aligned} & \text { t PHL } \\ & \text { t PLH } \end{aligned}$ | Transmission delay of the signal input to the output | $\begin{aligned} \text { VEE } & =V S S=0 \mathrm{~V} \\ \mathrm{CL} & =50 \mathrm{pF} \end{aligned}$ | 5 V | 25 | 55 | n s |
|  |  |  | 10V | 15 | 35 |  |
|  |  |  | 15 V | 10 | 25 |  |

Control the inputs A, B, C, and INH

|  | Control the input to the signal response | $\begin{aligned} & \mathrm{VEE}=\mathrm{VSS}=0 \mathrm{~V} \\ & \mathrm{RL}=10 \mathrm{~K} \Omega \end{aligned}$ <br> Enter at the end of all channels <br> Square-wave amplitude of 10 V | 10V | 65 |  | m V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{t} \text { PHL } \\ & \mathrm{t} \text { PLH } \end{aligned}$ | propagation <br> delay time <br> From the address to the signal output channel <br> For either on or off | $\begin{gathered} \text { VEE }=\mathrm{VSS}=0 \mathrm{~V} \\ \mathrm{CL}=50 \mathrm{pF} \end{gathered}$ | 5 V | 500 | 1000 | n S |
|  |  |  | 10V | 160 | 350 |  |
|  |  |  | 15 V | 120 | 240 |  |
|  |  |  |  |  |  |  |

oscillogram:




