

Vishay Semiconductors

Small Surface Mount Diodes

Features

- For surface mounted applications
- Low profile package
- Ideal for automated placement
- · Glass passivated
- High temperature soldering: 260 °C/ 10 seconds at terminals

Mechanical Data

Case: JEDEC -DO219-AB (SMF) Plastic case Polarity: Band denotes cathode end

Weight: approx. 0.01 g

17249

Packaging codes-options:

G1-10 K per 13" reel (8 mm tape), 50 K/box G2-3 K per 7" reel (8 mm tape), 30 K/box

Parts Table

Part	Type differentiation	Marking	Package
S07B	Single Diodes	SB	SMF
S07D	Single Diodes	SD	SMF
S07G	Single Diodes	SG	SMF
S07J	Single Diodes	SJ	SMF
S07M	Single Diodes	SM	SMF

S07B to S07M

Vishay Semiconductors

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
Maximum repetitive peak reverse voltage		S07B	V _{RRM}	100	V
		S07D	V _{RRM}	200	V
		S07G	V _{RRM}	400	V
		S07J	V _{RRM}	600	V
		S07M	V _{RRM}	1000	V
Maximum RMS voltage		S07B	V _{RMS}	70	V
		S07D	V _{RMS}	140	V
		S07G	V _{RMS}	280	V
		S07J	V _{RMS}	420	V
		S07M	V _{RMS}	700	V
Maximum DC blocking voltage		S07B	V _{DC}	100	V
		S07D	V _{DC}	200	V
		S07G	V _{DC}	400	V
		S07J	V _{DC}	600	V
		S07M	V _{DC}	1000	V
Maximum average forward rectified current	$T_{tp} = 75 \ ^{\circ}C^{1)}$		I _{F(AV)}	1.5	А
	$T_A = 65 \ ^\circ C^{2)}$		I _{F(AV)}	0.7	A
Peak forward surge current 8.3 ms single half sine-wave	T _L = 25 °C		I _{FSM}	25	A

¹⁾ Averaged over any 20 ms period

 $^{2)}$ Mounted on epoxy substrate with 3 x 3 mm CU pads (\geq 40 μm thick)

Maximum Thermal Resistance

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Thermal resistance junction to ambient air ²⁾	R _{θJA}	180	K/W
Operating junction and storage temperature range	T _J , T _{STG}	- 55 to + 150	°C

 $^{2)}$ Mounted on epoxy substrate with 3 x 3 mm CU pads (\geq 40 μm thick)

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Тур.	Max	Unit
Maximum instantaneous forward voltage	1.0 A ³⁾			1.1	V
Maximum DC reverse current at rated DC blocking voltage	T _A = 25 °C	I _R		10	μA
	T _A = 125 °C	I _R		50	μA
Reverse recovery time	$I_{F} = 0.5 \text{ A}, I_{R} = 1.0 \text{ A}, I_{rr} = 0.25 \text{ A}$	t _{rr}		1.8	μs
Typical capacitance at 4 V, MHz		CJ	4		pF

 $^{3)}$ Pulse test: 300 μ pulse width, 1 % duty cycle

S07B to S07M

Vishay Semiconductors

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

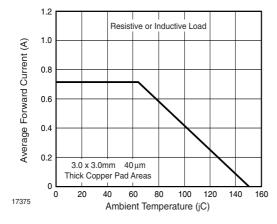


Figure 1. Forward Current Derating Curve

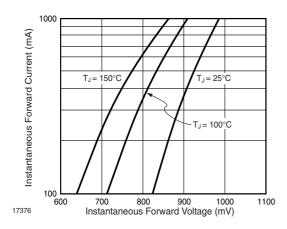


Figure 2. Typical Instantaneous Forward Characteristics

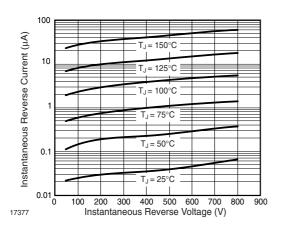
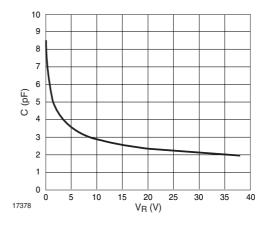
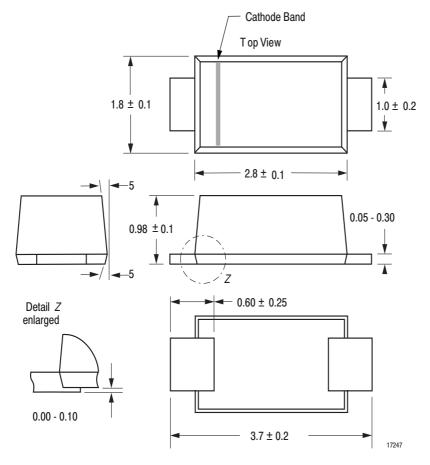
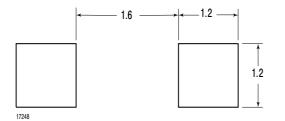


Figure 3. Typical Instantaneous Reverse Characteristics




Figure 4. Capacitance vs. Reverse Voltage

S07B to S07M



Vishay Semiconductors

Package Dimensions in mm

Mounting Pad Layout

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.