

Features

- 3-channel constant current LED sink driver for RGB LED clusters
- Constant output current range per channel: 5~150mA
- Excellent output current accuracy,
 - Between channels: <±3% (max.);
 - Between ICs: <±3% (max.)
- Sustaining voltage at output channels: 40V (max.)
- Embedded 16-bit PWM generator
 - Gray scale clock generated by the embedded oscillator, GCLK: 9MHz or 4.5MHz
 - Patented S-PWM technology to improve the visual refresh rate
- Two selectable modes for color enrichment and correction
 - 16-bit gray scale mode
 - 10-bit gray scale mode (with optional 6-bit dot correction)
- Reliable data transmission
 - Daisy-chain topology
 - Two-wire only transmission interface (patent pending)
 - Clock re-generation to recover the clock duty cycle
 - Selectable innovative cross-reference interface (patent pending)
- Supply voltage range (V_{DDH}): 7~30V
- Supporting 5V power system (V_{DDL})
- Embedded voltage regulator
 - Providing 5V power supply for peripheral devices when sufficiently biased
- Acting as a PWM controller with selectable polarity reversion to drive external high-power drivers or MOS
- RoHS-compliant packages

Application

- Architectural lighting
- LED curtain display or LED strip
- Neon light replacement
- Channel letter
- Remote PWM generator

Product Description

MBI6030 is a 3-channel, constant current, PWM-embedded LED sink driver for RGB LED cluster. MBI6030 provides constant current ranging from 5mA to 150mA for each output channel and sustains 40V at output channels. The constant output current of each output channel is adjustable with three corresponding external resistors.

By S-PWM technology, MBI6030 scrambles the 16-bit PWM cycle into 64 segments to enhance the visual refresh rate up to 64 times of the original frame rate, when GCLK, the gray scale clock generated by the embedded oscillator, frequency is 9MHz. MBI6030 also provides two selectable gray scale modes: 16-bit gray scale mode and 10-bit gray scale mode. 16-bit gray scale mode provides 65,536 gray scales for each LED to enrich the color; on the other hand, 10-bit gray scale mode provides 1,024 gray scales. However, in 10-bit gray scale mode, users may flexibly adopt 6-bit dot correction to adjust each LED by 64-step dot correction to calibrate the LED brightness.

Furthermore, MBI6030 features a two-wire only transmission interface to simplify the system controller design. To improve the transmission quality, MBI6030 provides clock regeneration to recover the clock duty cycle to avoid signal distortion after long-distance transmission. In addition, MBI6030 adopts an innovative cross-reference interface (IX/IY) to reduce common mode noise, so that MBI6030 can support longer transmission distance.

MBI6030 allows wide supply voltage range (V_{DDH}) from 7V to 30V, which is suitable for 12V or 24V systems, or MBI6030 can support 5V power system (V_{DDL}). With the embedded voltage regulator, MBI6030 can also provide 5V power supply for peripheral devices when sufficiently biased. Additionally, MBI6030 preserves selectable polarity reversion to driver external high-power drivers as a PWM controller.

Pin Configuration

Terminal Description

MBI6030GP

Pin No.		Pin Name	Function			
GP	GFN	1 m Marine	rancion			
1	6	GND	Ground terminal.			
2	7	POL	Input terminal for selecting output polarity. With internal pull-up resistor connected to VDDL. High / NC: normal mode, or to drive low-active regulators or PMOS. Low: output reversed, to work as a PWM controller to drive high-active regulators or NMOS.			
3,4,5	8,9,10	R-EXTA,B,C	Input terminal for setting output current by connecting to an external resistor.			
14,13,12	23,22,21	OUTA,B,C	Output terminals for constant current output			
6	2,3,4,5,11, 14,15,16,17	NC	Internal pull-down. Keep un-connected.			
11	20	SEL_INT	Input terminal for selecting interface type. Internal pull-down. NC: SPI-like interface. Connected to VDDL: cross reference interface.			
7	12	CKI / IX	Input terminal for clock input (CKI) or input interface channel X (IX).			
8	13	SDI / IY	Input terminal for serial data input (SDI) or input interface channel Y (IY).			
10	19	CKO / OX	Output terminal for clock output or output interface channel X (OX).			
9	18	SDO / OY	Output terminal for serial data output (SDO) or output interface channel Y (OY).			
15	24	VDDL	Bidirectional voltage regulator output for internal or external use. Connecting a capacitor to GND to enhance the stability of VDDL. When VDDH is sufficiently biased, VDDL can also supply 5V to peripheral devices.			
16	1	VDDH	High supply voltage terminal.			

Note: Please refer "Operation Principle" section for detailed operation of IX/IY interface.

Block Diagram

SDI/IY

Equivalent Circuits of Inputs and Outputs

OUTA, OUTB, OUTC R-EXTA, R-EXTB, R-EXTC terminal

Maximum Ratings

Characte	ristic	Symbol	Rating	Unit
Supply Voltage		V _{DDH}	0~35	V
Supply Voltage		V _{DDL}	0~7	V
Logic Input Voltage		V _{IN}	-0.4~V _{DDL} +0.4	V
Output Current per Output Ch	nannel	I _{OUT}	+170	mA
Sustaining Voltage at OUT po	ort	V _{DS}	-0.5~+40	V
GND Terminal Current		I _{GND}	480	mA
Power Dissipation	MBI6030GP	PD	1.85	W
(On PCB, Ta=25°C)	MBI6030GFN	P _D	2.97	W
Thermal Resistance	MBI6030GP	R _{th(i-a)}	67.44	°C/W
(On PCB, Ta=25°C)	MBI6030GFN		42.10	°C/W
Operating Junction Temperat	ure	T _{j,max}	150	°C
Operating Temperature		T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
	Human Body Mode (MIL-STD-883G Method 3015.7)	НВМ	Class 3A (4KV ~ 7999V)	-
	Machine Mode (JEDEC EIA/JESD22-A115)	MM	Class C (400V)	-

Electrical Characteristics (Ta=25°C)

Characteristic		Symbol	Co	ondition	Min.	Тур.	Max.	Unit
Voltage Regulator Inpu	ut Voltage	V _{DDH}	-		7	-	30	V
Voltage Regulator Out Voltage	V _{DDL}	V _{DDH} =12V, s	ource 30mA	4.5	5	5.5	V	
Sustaining Voltage at	OUT Ports	$V_{\text{DS,Max}}$	OUTA ~ OUTC		-	-	40	V
Output Current		I _{OUT}	Refer to "Test Circuit for Electrical Characteristics"		5	-	150	mA
Output Leakage Curre	nt	I _{OUT}	V _{DS} =40V, al off	V _{DS} =40V, all channels turn off		-	0.2	μA
Output Supply Current			V _{DDH} =12V		-	8	-	mA
		IDDO	V _{DDH} =24V		-	16	-	mA
Current Skew (Channe))	dl _{out1}	I _{OUT} =19.9m/ V _{DS} =1.0V	I _{OUT} =19.9mA V _{DS} =1.0V R _{ext} =20Ω		±1.5	±3.0	%
Current Skew (IC)		dl _{OUT2}	I_{OUT} =19.9mA V_{DS} =1.0V R_{ext} =20 Ω			±1.5	±3.0	%
Output Current vs. Output Voltage Regul <i>e</i>	ation	%/dV _{DS}	V _{DS} within 1	.0 V and 3.0V	-	±0.1	±0.15	% / V
Output Current vs. Voltage Regulator Input Voltage Regulation*		%/dV _{DDH}	V_{DDH} within 6.5V and 30V		-	±0.2	±0.5	% / V
		I _{OH}	CKO/OX, SI V _O =3.5V	DO/OY, at	-	-19	-	mA
Output Current for Logic Output		I _{OL}	CKO/OX, SDO/OY at V _o =1.5V		-	19	_	mA
Input Voltage for	Itage for "H" level $V_{\rm H}$ Ta = -40~85°C		$0.7 \mathrm{xV}_{\mathrm{DD}}$	-	V _{DD}	V		
CKI/IX, SDI/IY "L" level		V _{IL}	Ta = -40~85°C		GND	-	$0.3 x V_{DD}$	V
Output Voltage "H" level		V _{OH}	I _{OH} =-1.0mA			-	0.2	V
for CKO/OX, SDO/OY "L" level		V _{OL}	I _{OL} =+1.0mA		4.5	-		V
Voltage at R-EXTA, R-EXTB, R-EXTC Pins		V _{REXT}	R _{ext} =20Ω		0.376	0.4	0.424	V
Threshold Temperature for		Tv	POL=high	I _{OUT} =off (1CH=5mA)		155	_	°C
Thermal Shutdown		- ^	POL=low	I _{OUT} =on (1CH=5mA)				
Threshold Temperature for		т	POL=high	I _{OUT} =on (1CH=5mA)		125		°C
Thermal Shutdown Recovering		I RECV	POL=low	I _{OUT} =on (1CH=5mA)		125	-	J
Pull-up Resistor of PO	R _{IN} (up)	POL		-	470		KΩ	
Pull-down Resistor of a	SEL_INT	R _{IN} (down)	SEL_IN I		-	470	-	KΩ
Oursely Oursent		I _{DD} (on) 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, UTC =On	-	3.2	-	mA
Supply Current		I _{DD} (on) 2	$R_{ext}=6.8\Omega,$ $\overline{OUTA} \sim \overline{OUTC} = On$		-	3.6	-	mA

* One channel turns on.

PWM Embedded 3-Channel Constant Current

LED Sink Driver for RGB LED Cluster

Test Circuit for Electrical Characteristics

Switching Characteristics

Charact	eristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time 1	CKI – CKO	t _{P1}		-	25	-	ns
Topagation Delay Time T	IX/IY – OX/OY	t _{P1}		-	60	-	ns
Propagation Delay Time 2	CKO↑ - SDO	t _{P2}		-	2	-	ns
Pulse Width	CKO/OX, OY	t _{w(O)}			30	40	ns
	CKO/OX, OX/OY	t _{w(I)}	T 0500	30	-	-	ns
Output Rise Time of	CKO/OX, OX/OY	t _{cr}	1 _A =25°C	-	2.5	-	ns
Output Ports		t _{orh} *	$V_{DD}=12V$	-	60	-	ns
		t _{orl} *	V _{DS} =1V V _{IH} =4.5V V _{IL} =0.5V R _{ext} =20Ω (I _{OUT} =20mA)	-	125	-	ns
	CKO/SDO, OX/OY	t _{cf}		-	2.5	-	ns
Output Parts		t _{ofh} *		-	40	-	ns
		t _{ofl} *		-	135	-	ns
Hold Time	SDI-CKI↓	t _{H(D)}	R _L =200Ω	5	-	-	ns
Setup Time	CKI↓-SDI	t _{S(D)}	C _L =10pF	5	-	-	ns
	IX IY**	F _{IX, IY}		-	-	10	MHz
Frequency	CKI**	F _{скі}		-	-	10	MHz
Trequency	High-frequency	F _{GCLK}		8.1	9.0	9.9	MHz
	Low-frequency	F _{GCLK}		4.0	4.5	5.0	MHz
Maximum CKI Rise Time		t _r		-	-	500	ns
Maximum CKI Fall Time		t _f		-	-	500	ns

 t_{orh} , t_{ofh} are for the high-frequency GCLK. t_{orl} , t_{ofh} are for the low-frequency GCLK.

**The maximum frequency may be limited by different application conditions. Please refer to the application note for details.

Test Circuit for Switching Characteristics

Timing Waveform

SPI-Like Interface

Cross-Reference Interface

Operation Principle

Control Method

Featuring a two-wire only transmission interface, MBI6030 allows users to choose either SPI-like interface or cross-reference interface by "SEL_INT" pin to address the image data of each LED driver accurately. The following paragraphs explain the principles of the two interfaces by a two-wire only transmission interface.

Control interface 1: SPI-like interface (CKI, SDI)

When "SEL_INT" pin is unconnected, MBI6030 will adopt the SPI-like interface (CKI/SDI). By SPI-like interface, MBI6030 samples the data (SDI) at the falling edge of the clock (CKI).

Control interface 2: cross-reference interface (IX, IY)

When "SEL_INT" pin is connected to "VDDL" pin, MBI6030 will adopt the cross-reference interface. The system controller generates IX/IY from data (SDI) and clock (CKI) based on the logic relationship of clock, data, IX and IY as shown in the following formula:

IY=data&clock

IX=(! data)&clock

MBI6030 thereafter reads the input gray scale data through IX/IY and simply compares the signal difference of IX/IY to decode the data. Then, MBI6030 encodes again and sends the data through OX/OY to next MBI6030. By cross-reference interface, MBI6030 reduces the common mode noise. Therefore, MBI6030 can transmit longer distance by cross-reference interface than by SPI-like interface.

The following waveforms are the examples of the SPI-like interface and the cross-reference interface.

SPI-Like Interface (CKI, SDI)

Time-out alert disconnection

If the CKI stops for more than eight cycles, MBI6030 may identify the wires as disconnection. For cross reference interface (IX/IY), MBI6030 will also identify the wires as disconnection if both IX and IY stop for more than eight cycles. To prevent from misreading, MBI6030 will ignore the present input data and continuously show the previous image data until the next image data is correctly recognized.

GCLK Frequency

MBI6030 provides two kinds of GCLK frequency for different applications: high-frequency GCLK and low-frequency GCLK. Users can set the GCLK frequency by the bit "s" in the header of the input data stream. When bit "s" is "1", MBI6030 works at high-frequency GCLK; when bit "s" is "0", MBI6030 works at low-frequency GCLK.

High-frequency GCLK

In the high-frequency GCLK, the rising time and falling time of output ports (t_{Orh} , t_{Ofh}) and the PWM clock (F_{GCLKH}) are set as high frequency. The high-frequency GCLK is 9MHz±10%, which has twice visual refresh rate of the low-frequency GCLK.

Low-frequency GCLK

In the low-frequency GCLK, the rising time and falling time of output (t_{Orl} , t_{Ofl}) and the PWM clock (F_{GCLKL}) are set as low frequency. The low–frequency GCLK is 4.5MHz±10%, which can induce lower EMI and keep output current uniform at large output current.

Setting the Gray Scale

MBI6030 provides two selectable gray scale modes: 16-bit gray scale mode and 10-bit gray scale mode. 6-bit dot correction is only available in 10-bit gray scale mode. 16-bit gray scale mode provides 65,536 gray scales for each LED; on the other hand, 10-bit gray scale mode provides 1,024 gray scales. However, in 10-bit gray scale mode, users may flexibly adopt 6-bit dot correction to adjust each LED by 64-step digital dot correction.

In addition, MBI6030 is also embedded with an oscillator as the clock of PWM counter (GCLK) to turn on output ports according to the gray scale data sent from the system controller.

MBI6030's gray scale mode and the GCLK frequency are set according to the 6-bit header of the input data stream. The following table summarizes the definition of the header.

Summary of the header

Heade	•	Mode	Data Type				
H[5:0]	6'b11 111s	16-bit gray scale mode	16-bit gray scale data				
H[5:0]	6'b10 101s	10-bit gray scale mode	10-bit gray scale data				
H[5:0]	6'b10 011s	10-bit gray scale mode	6-bit dot correction data				

bit "s": 1, high-frequency GCLK (9MHz)

bit "s": 0, low-frequency GCLK (4.5MHz)

MBI6030

PWM Embedded 3-Channel Constant Current LED Sink Driver for RGB LED Cluster

After receiving more than 32 bits of "0", MBI6030 starts to check the validity of the header, while the input data stream comes out the first bit of "1". If the header is valid, MBI6030 will latch the specific data according to the following protocol. The header and the protocol are specified below:

16-bit gray scale mode

In the 16-bit gray scale mode, each word is 16 bits. Each MBI6030 uses 3 words (3x16=48 bits) for the gray scale data of \overline{OUTC} , \overline{OUTB} and \overline{OUTA} . Besides the gray scale data, there is a 48-bit packet header. The whole data format of the 16-bit gray scale mode is shown below:

16-bit gray scale data stream

leading bit				gray	scale data	a							
← 16 bits→				┢	-16 bits)	•							
ΗZ	X6	L	X6	X10	А	В	С	•	•	•	А	В	С
н н	eader	3 x 16	bits -	*	— Each c	lriver has 3 x	16 bits —						
				₩		Tota	al N drivers, o	data	a len	gth	: N x 3 x 16	bits	
H[5:0]: 6't	o11 11	11s											
bit "s": 1, I	high-f	requ	ency	GCLK									
bit "s": 0, I	low-fr	eque	ency	GCLK									
Z[9:0]: 10	'b00 (0000	0000)									
L[9:0]: N-	1, N=	Num	ber c	f LED	drivers i	in series							
For exam	ple, if	1024	4 LEI	D clust	ers are	connected	in series,	the	en L	_=1	024-1=10	23, 10'b1′	1 1111 1111.
X6[5:0]: 6	bits,	don'i	t care	9									
X10[9:0]:	10 bit	ts, do	on't c	are									
A[15:0]: 1	6 bits	gray	/ sca	le data	for OU	ITA . The o	duty ratio o	of	OU	ΤA	will be A	[15:0]/655	536.
B[15:0]: 1	6 bits	gray	/ sca	le data	for OU	ITB . The o	duty ratio o	of	OU	ΤВ	will be B	[15:0]/65	536.
C[15:0]: 1	6 bits	gray	/ sca	le data	for OL	JTC . The o	duty ratio o	of	OU	тс	will be C	C[15:0]/65	536.

10-bit gray scale mode

In the 10-bit gray scale mode, users may choose to send or not to send 6-bit dot correction data. The formula of output duty ration is as below:

Duty ratio=(10-bit gray scale)x(6-bit dot correction+1)/65536

If using 6-bit dot correction, users only need to send the dot correction data once. If not using 6-bit dot correction, users do not need to send the dot correction data. The default value of dot correction data is 63 (6b'1).

The 10-bit gray scale data and 6-bit dot correction data are sent separately. The word length in the 10-bit gray scale mode is 10 bits. The data formats of 10-bit gray scale and of 6-bit dot correction are shown below respectively:

<u>MBI6030</u>

PWM Embedded 3-Channel Constant Current LED Sink Driver for RGB LED Cluster

10-bit gray scale data stream

leading bit gray scale data
(←10 bits→) (←10 bits→)
H X4 Z L A B C · · · A B C
Header 3 x 10 bits Each driver has 3 x 10 bits
H[5:0]: 6'b10 101s
bit "s": 1, high-frequency GCLK
bit "s": 0, low-frequency GCLK
Z1[3:0]: 4'b0000
Z[9:0]: 10'b00 0000 0000
L[9:0]: N-1, N=Number of LED drivers in series
For example, if 1024 LED clusters are connected in series, then L=1024-1=1023, 10'b11 1111 1111
X4[3:0]: 4 bits, don't care
A[9:0]: 10 bits gray scale data for OUTA
B[9:0]: 10 bits gray scale data for OUTB
C[9:0]: 10 bits gray scale data for OUTC
6-bit dot correction data stream
dot correction data
leading bit (only 6 bits are effective) ↓ 10 bits→ ↓ ↓ 10 bits→
H X4 Z L DA DB DC DA DB DC
Header 3 x 10 bits — Header 3 x 10 bits —
← Total N drivers, data length : N x 3 x 10 bits →
H[5:0]: 6'b10 011s
bit "s": 1, high-frequency GCLK
bit "s": 0, low-frequency GCLK
Z1[3:0]: 4'b0000
Z[9:0]: 10'b00 0000 0000
L[9:0]: N-1, N=Number of LED drivers in series
For example, if 1024 LED clusters are connected in series, then L=1024-1=1023, 16'b11 1111 1111.
X4[3:0]: 4 bits, don't care
DA[5:0]: 6 bits dot correction data for OUTA
DA[9:6]: unused
DB[5:0]: 6 bits dot correction data for OUTB
DB[9:6]: unused
DC[5:0]: 6 bits dot correction data for OUTC
DC[9:6]: unused
The duty ratio of \overline{OUTA} will be A[9:0])x(DA[5:0]+1)/65536.
The duty ratio of \overline{OUTB} will be B[9:0])x(DB[5:0]+1)/65536.

The duty ratio of \overline{OUTC} will be C[9:0])x(DC[5:0]+1)/65536.

The interval between two data streams

Users need to leave at least 32 clocks interval between two data streams in order to help MBI6030 identify the data stream correctly. The following timing diagram shows the example of the interval between two data streams in 16-bit gray scale mode.

The Interval between two data streams should be at least 32 clocks.

PWM Counting

Designed with S-PWM technology, MBI6030 may increase the visual refresh rate by 64 times. MBI6030 will continuously repeat the PWM cycle and turn on the output ports according to the image data until the next image data is correctly recognized. Once the next input data is correctly recognized, MBI6030 will stop the present PWM cycle and restart a new PWM cycle to show the new data immediately.

16-bit gray scale mode:

In the 16-bit grays scale mode, MBI6030 scrambles the 16-bit PWM to 64 segments.

So that the visual refresh rate is increased to:

4.5MHz (min. GCLK frequency) / 65536 x 64 = 4,395Hz

If the GCLK frequency is 9MHz, the visual refresh rate will be:

9MHz / 65536 x 64 = 8,789Hz

64 times of MSB 10-bit/6-bit PWM Counting

10-bit gray scale mode:

In the 10-bit gray scale mode, the duty ratio of the output port is (10 bits gray scale data) x (6 bits dot correction data +1)/65536. The 10 bits gray scale data is repeated for (dot correction +1) times. MBI6030 can also increase the visual refresh rate in this mode by the S-PWM technology.

For example, the following figure shows the duty cycle of dot correction data = 31.

10-bit PWM Counting, 1024 GCLKs

]
64 times of MSB 10-bit PWM Counting	

Embedded Voltage Regulator

MBI6030 has an embedded voltage regulator to regulate the high input supply voltage to 5V supply voltage for internal and external use. The input voltage is ranging from 7~30V, which is suitable for 12V/24V system. The high supply voltage is connected to VDDH, and the output of the regulator is connected to VDDL. An external capacitor of 4.7uF should be connected between VDDL and ground to stablize the output voltage. MBI6030 can provide 5V power supply from VDDL for peripheral devices when sufficiently biased. There is a thumb rule to estimate the 5V output supply current (I_{DDO}):

If V_{DDH} =12V, then I_{DDO} is around 8mA;

if V_{DDH} =12V, then I_{DDO} is around 16mA.

MBI6030 also supports 5V power supply by connecting the power to both VDDH and VDDL directly. Please refer to the application circuit section or MBI6030 application note for further details on circuit design.

Application Information

Application Circuit

12V/24V Power System

5V Power System

Series Connection

	SPI-Like Interface (CKI/SDI)	Cross Reference Interface (IX/IY)
SEL_INT	Floating	Connected to VDDL

٦

T

Г

* Add resistors and Schottky diodes to prevent undershoot voltage.

** Please refer to the section of "Adjusting Output Current" of MBI6030 Preliminary Datasheet V1.00.

^*** R_{16} ~ R_{24} =(V_{LED} - V_{F} - V_{DS})/ I_{OUT}

1. Power supply is connected to VDDH. Note:

2. For hot swapping, system grounding, connector design, and external ESD protection, and please refer to MBI6030 application note for details.

MBI6030 controls 3 x MBI1801

1. POL is floating.

Note:

For hot swapping, system grounding, connector design, and external ESD protection, and please refer to MBI6030 application note for details.

MBI6030 controls 3 x MBI1828

* Add resistors and Schottky diodes to prevent undershoot voltage.

** Please refer to the section of "Adjusting Output Current" of MBI6030 Preliminary Datasheet V1.00.

*** Add pull-up resistors to drive 3 x MBI1828, and $R_6 \sim R_8 = (VDD-V_{DS})/I_{OUT} < V_{11,OE}$ of MBI1828.

**** Please refer to MBI1828 application note for details.

1. POL is connected to ground. Note:

2. For hot swapping, system grounding, connector design, and external ESD protection, and please refer to MBI6030 application note for details.

Constant Current

1) MBI6030 performs excellent current skew: the maximum current variation between channels is less than \pm 3%, and that between ICs is less than \pm 3%.

2) In addition, in the saturation region, the output current keeps constant when the output voltage (V_{DS}) is changed. . This characteristic guarantees the LED show the same brightness regardless of the variations of LED forward voltages (V_F).

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following figure.

Also, the output current can be calculated by the equation: $I_{OUTA}=V_{REXT}/(R_{extA}+0.116)$

 $I_{OUTB}=V_{REXT}/(R_{extB}+0.116)$

 $I_{OUTC}=V_{REXT}/(R_{extC}+0.116)$

Where V_{REXT} is around 0.4 V, and R_{extA} , R_{extB} , R_{extC} are the resistances of the external resistors connected to R-EXTA, R-EXTB, R-EXTC terminals. The current (as a function of R_{ext}) is around 97mA when R_{extA} , R_{extB} , or R_{extC} =4 Ω , and 19.9mA when R_{extA} , R_{extB} , or R_{extC} =20 Ω .

Package Power Dissipation (P_D)

The maximum power dissipation, $P_D(max)=(T_{j,max}-T_a)/R_{th(j-a)}$, decreases as the ambient temperature increases. Please refer to the following figure to design within the safe operation area.

TP Function (Thermal Protection)

MBI6030 will automatically protect IC from overheating when the junction temperature exceeds the threshold, T_X (typ. 155 °C). If the POL is pulled up, the output current will be turned off. Thus, the junction temperature starts to decrease. As soon as the temperature is below T_{RECV} (typ. 125 °C), the output current will be turned on again. The on-state and off-state switch are at a high frequency; thus, the blinking is imperceptible. However, the average output current is limited, and therefore, the driver is protected from being overheated.

Load Supply Voltage (V_{LED})

The design of V $_{\mbox{\scriptsize LED}}$ should fulfill two targets:

- 1. Less power consumption and heat
- 2. Sufficiently headroom for the LED and driver IC to operate in the constant current region.

The power dissipation (P_D) of MBI6030 is calculated by the equation:

 $\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{DDH}} \times \mathsf{I}_{\mathsf{DD}}) + [\mathsf{I}_{\mathsf{OUTA}} \times (\mathsf{V}_{\mathsf{DSA}} - \mathsf{V}_{\mathsf{REXTA}})] + [\mathsf{I}_{\mathsf{OUTB}} \times (\mathsf{V}_{\mathsf{DSB}} - \mathsf{V}_{\mathsf{REXTB}})] + [\mathsf{I}_{\mathsf{OUTC}} \times (\mathsf{V}_{\mathsf{DSC}} - \mathsf{V}_{\mathsf{REXTC}})]$

From the figure below, $V_{DS} = V_{LED} - V_F$, which V_{LED} is the supply voltage of LED. $P_{D (act)}$ will be greater than $P_{D (max)}$, if V_{DS} drops too much voltage on the driver. In this case, it is recommended to use the lowest possible supply voltage or to set an external resistor to reduce the by V_{DROP} .

 $V_{DS}=(V_{LED}-V_F)-V_{DROP}$

Please refer to the following figure for the application of the resister.

Switching Noise Reduction

LED drivers are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, please refer to "Application Note for 8-bit and 16-bit LED Drivers-Overshoot".

Package Outline

MBI6030GP Outline Drawing

MBI6030GFN Outline Drawing

Product Top-mark Information

Product Revision History

Datasheet version	Device version code
V1.00	A

Product Ordering Information

Part Number	RoHS Compliant Package Type	Weight (g)
MBI6030GP	SSOP16L-150-0.64	0.111g
MBI6030GFN	QFN24L-4*4-0.5	0.038g

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service without notice. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

Related technologies applied to the product are protected by patents. All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.