

NKE Series

Isolated Sub-Miniature 1W Single Output DC/DC Converters

· AT A REAL PROPERTY OF A REAL P

FEATURES

- RoHS Compliant
- Sub-Miniature SIP & DIP Styles
- 3kVDC Isolation
- UL Recognised
- Wide Temperature performance at full 1 Watt load, -40°C to 85°C
- Increased Power Density to 2.09W/cm³
- UL 94V-0 Package Material
- Footprint at 0.69cm²
- Industry Standard Pinout
- 3.3V, 5V & 12V Input
- 3.3V, 5V, 9V, 12V and 15V Output
- Internal SMD Construction
- Fully Encapsulated with Toroidal Magnetics
- MTTF up to 2.4 Million hours
- Custom Solutions Available
- No Electrolytic or Tantalum Capacitors

PRODUCT OVERVIEW

The NKE sub-miniature series of DC/DC Converters is particularly suited to isolating and/or converting DC power rails. A smaller package size, improved efficiency, lower output ripple and 3kVDC isolation capability through state of the art packaging and improved technology. The galvanic isolation allows the device to be configured to provide an isolated negative rail in systems where only positive rails exist. The wide temperature range guarantees startup from -40° C and full 1 watt output at 85°C.

Order Code	Innut '		Output Current	Input Current at Efficiency Rated Load		Isolation Capacitance		Packag	
	V	V	mA	mA	Min.	% Тур.	pF	kHrs	Style
NKE0303DC	3.3	3.3	303	400	68	72	30	1234	
NKE0305DC	3.3	5	200	400	72	75	35	632	
NKE0309DC	3.3	9	111	403	71	74	30	1204	DIP
NKE0312DC ³	3.3	12	83	398	73	76	33		
NKE0315DC ³	3.3	15	66	394	74	77	35		
NKE0303SC	3.3	3.3	303	400	68	72	30	1234	
NKE0305SC	3.3	5	200	400	72	75	35	632	SIP
NKE0309SC	3.3	9	111	403	71	74	30	1204	
NKE0503DC	5	3.3	303	270	70	74	40	619	
NKE0505DC	5	5	200	289	66	69	28	2414	DIP
NKE0505DEC	5	5	200	250	75	77	34	419	
NKE0509DC	5	9	111	266	72	75	29	1173	
NKE0512DC	5	12	83	260	73	78	30	633	
NKE0515DC	5	15	66	256	74	78	32	360	
NKE0503SC	5	3.3	303	270	70	74	40	619	
NKE0505SC	5	5	200	289	66	69	28	2414	
NKE0505SEC	5	5	200	250	75	77	34	419	010
NKE0509SC	5	9	111	266	72	75	29	1173	SIP
NKE0512SC	5	12	83	260	73	78	30	633	
NKE0515SC	5	15	66	256	74	78	32	360	
NKE1205DC	12	5	200	117	68	72	35	620	
NKE1209DC	12	9	111	107	72	78	50	488	
NKE1212DC	12	12	83	105	73	79	57	360	DIP
NKE1215DC	12	15	66	103	76	81	60	252	1
NKE1205SC	12	5	200	117	68	72	35	620	
NKE1209SC	12	9	111	107	72	78	50	488	015
NKE1212SC	12	12	83	105	73	79	57	360	SIP
NKE1215SC	12	15	66	103	76	81	60	252	1

NKE0505SEC/NKE0505DEC offers higher efficiency than NKE0505SC/NKE0505DC but over a narrower operating temperature range. See temperature characteristics graph.

INPUT CHARACTERIST	ICS				
Parameter	Conditions	Min.	Тур.	Max.	Units
Voltage range	Continuous operation, 3.3V input types	2.97	3.3	3.63	
	Continuous operation, 5V input types	4.5	5.0	5.5	V
	Continuous operation, 12V input types	10.8	12.0	13.2	
Reflected ripple current	3.3V input types		40	60	mA p-p
	DATINOO				

Lead temperature 1.5mm from case for 10 seconds	300°C
Internal power dissipation	530mW
Input voltage V _{IN} , NKE03 types	5.5V
Input voltage VIN, NKE05 types	7V
Input voltage VIN, NKE12 types	15V

1. Calculated using MIL-HDBK-217F with nominal input voltage at full load.

All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

muRata Ps Murata Power Solutions

NKE Series

Isolated Sub-Miniature 1W Single Output DC/DC Converters

OUTPUT CHARACTERISTIC	S				
Parameter	Conditions	Min.	Тур.	Max.	Units
Rated Power	T _A =-40°C to 120°C, see derating graphs			1.0	W
Voltage Set Point Accuracy	See tolerance envelope				
Line regulation	High VIN to low VIN		1.0	1.2	%/%
	10% load to rated load, 3.3V output types & 0309		10	15	%
	10% load to rated load, 5V output types		12	15	
Load Regulation ¹	10% load to rated load, 9V output types		7.5	10	
	10% load to rated load, 12V output types		6.5	9.5	
	10% load to rated load, 15V output types		6.0	8.5	
	BW=DC to 20MHz, 3.3V output types & 0305, 0505SEC, 0505DEC		40	80	
Ripple and Noise	BW=DC to 20MHz, other 5V output types		77	100	
	BW=DC to 20MHz, 9V output types		43	90	mV p-p
	BW=DC to 20MHz, 12V output types		35	65	
	BW=DC to 20MHz, 15V output types		32	55	

ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Isolation test voltage	Flash tested for 1 second	3000			VDC		
Resistance	Viso= 1000VDC		10		GΩ		

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Switching frequency	All output types		115		kHz

TEMPERATURE CHARACTER	ISTICS				
Parameter	Conditions	Min.	Тур.	Max.	Units
Specification	All output types	-40		85	
Storage		-50		130	°C
Case temperature rise above	0505D/S, 1205D/S			41	U
ambient	All other output types			32	
Cooling	Free air convection				

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NKE series of dc/dc converters are all 100% production tested at their stated isolation voltage. This is 1000V DC for 1 second.

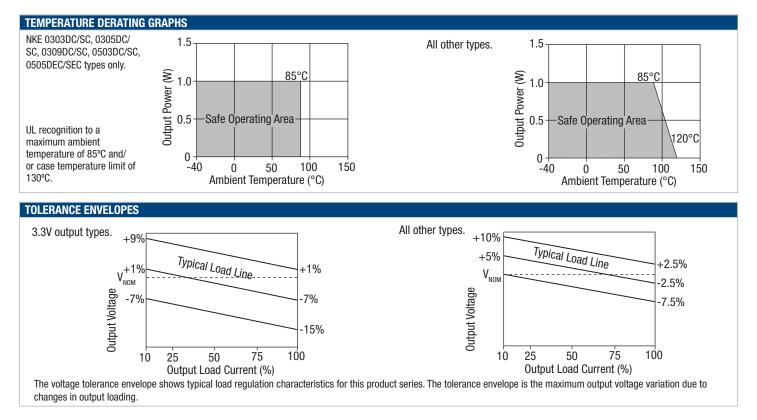
A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The NKE series has been recognized by Underwriters Laboratory for functional insulation. Both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. While manufactured parts can withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL


The NKE series has been recognised by Underwriters Laboratory (UL) to UL 60950 for functional insulation in a maximum ambient temperature of 85°C and/or case temperature limit of 130°C. Case temperature measured on the face opposite the pins. File number E179522 applies.

1. 12V input types have typically 3% less load regulation.

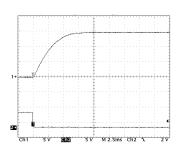
muRata Ps Murata Power Solutions

NKE Series

Isolated Sub-Miniature 1W Single Output DC/DC Converters

Isolated Sub-Miniature 1W Single Output DC/DC Converters

APPLICATION NOTES

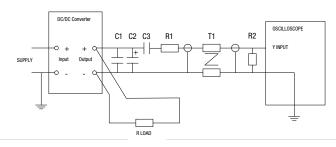

Minimum load

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of 2.2µs and output capacitance of 10µF, are shown in the table below. The product series will start into a capacitance of 47µF with an increased start time, however, the maximum recommended output capacitance is 10µF.

	Start-up time		Start-up time
	μs		μs
NKE0303SC	544	NKE0512SC	5040
NKE0305SC	1306	NKE0515SC	9940
NKE0309SC	5250	NKE1205SC	1671
NKE0503SC	496	NKE1209SC	2835
NKE0505SC	1075	NKE1212SC	5295
NKE0505SEC	894	NKE1215SC	8475
NKE0509SC	3140		


Typical Start-Up Wave Form

Ripple & Noise Characterisation Method

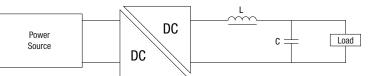
Ripple and noise measurements are performed with the following test configuration.

C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter
C2	10μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100 \text{ m}\Omega$ at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, \pm 1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires
Measured val	ues are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

Isolated Sub-Miniature 1W Single Output DC/DC Converters

APPLICATION NOTES (continued)

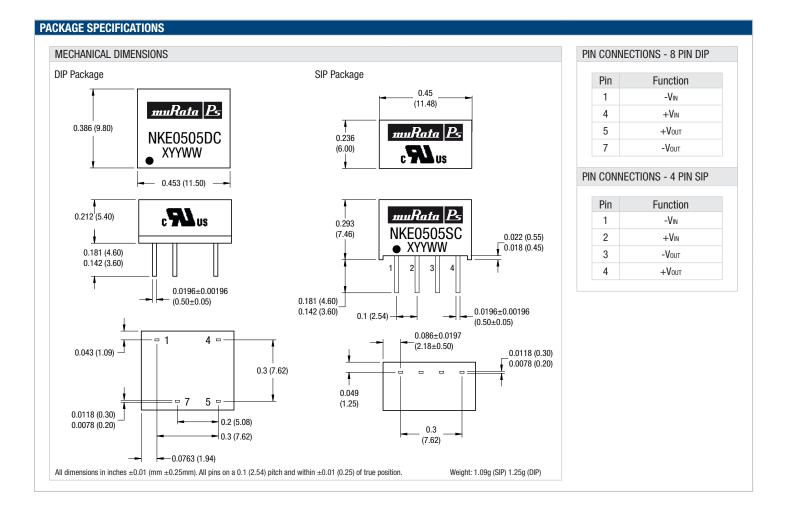

Output Ripple Reduction

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

Component selection

Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.

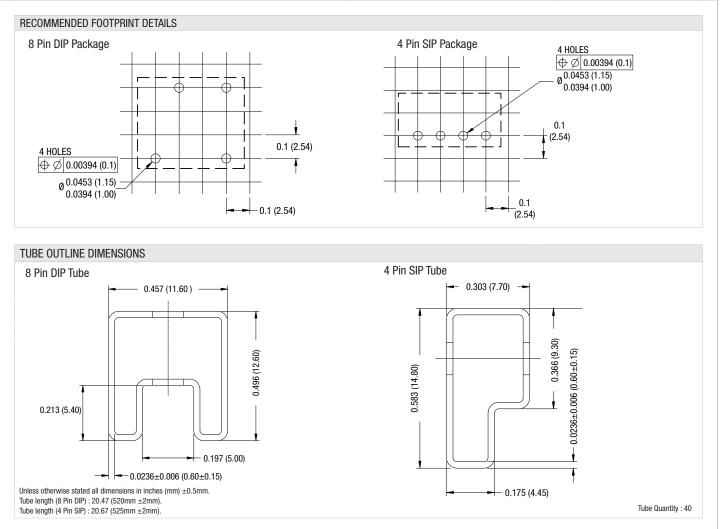
Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz.



	Inductor		Capacitor	
	L, µH	SMD	Through Hole	C, μF
NKE0303xC	10	82103C	11R103C	4.7µF
NKE0305xC	47	82473C	11R473C	4.7µF
NKE0309xC	47	82473C	11R473C	1µF
NKE0503xC	10	82103C	11R103C	4.7µF
NKE0505xC	47	82473C	11R473C	4.7µF
NKE0505xEC	47	82473C	11R473C	4.7µF
NKE0509SC	47	82473C	11R473C	1µF
NKE0512xC	68	82683C	11R683C	0.68µF
NKE0515xC	100	82104C	11R104C	2.2µF
NKE1205xC	47	82473C	11R473C	4.7µF
NKE1209xC	47	82473C	11R473C	1µF
NKE1212xC	68	82683C	11R683C	0.47µF
NKE1215xC	100	82104C	11R104C	2.2µF

NKE Series

Isolated Sub-Miniature 1W Single Output DC/DC Converters



NKE Series

Isolated Sub-Miniature 1W Single Output DC/DC Converters

RoHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems.

For further information, please visit www.murata-ps.com/rohs

Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy: Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply technical information contained refersit, with the initiage oper calculation of the practice operation operati