

NOT FOR PUBLIC RELEASE

RTL8208C-GR

SINGLE-CHIP OCTAL 10/100BASE-TX PHY TRANSCEIVER

DATASHEET (CONFIDENTIAL: Development Partners Only)

Rev. 1.0 03 March 2009 Track ID: JATR-1076-21

Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

Technologies CO

COPYRIGHT

©2009 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

REVISION HISTORY

Revision	Release Date	Summary
1.0	2009/03/03	First Release.

ii

Table of Contents

1.	GENERA	AL DESCRIPTION	1
2.	FEATUF	RES	2
3.	APPLIC	ATIONS	2
4.	PIN ASS	IGNMENTS	3
	4.1. PAG	CKAGE IDENTIFICATION	3
5.	PIN DES	SCRIPTIONS	5
6.	5.2. Pov 5.3. Mis 5.4. RM 5.5. SM 5.6. LEI 5.7. Mo 5.8. TES REGIST 6.1. REC 6.2. REC 6.3. REC 6.4. REC 6.5. REC 6.6. REC	DIA CONNECTION PINS	5 6 8 9 .10 .11 .11 .14 .16 .16 .19
	6.8. POF	rt 1 Register24: Cable Tester Control Register0	22
		rt1 Register29: Cable Tester Control Register1 rt1 Register30: Cable Status Register	
7.		ION DESCRIPTION	
/.	7.1. Gen 7.1.1. S 7.1.2. H 7.1.3. Z 7.1.4. H	NERAL SMI (Serial Management Interface) PHY Address Auto-Negotiation Full-Duplex Flow Control	24 24 24 24 24 25
	7.2.1. 7.2.2. 7.3. 7.3.1. 7.3.2. 7.3.3. 7.3.4.	TIALIZATION AND SETUP Reset	25 25 26 26 26 26
	7.4. 100 7.4.1. 7 7.4.2. 7 7.4.3. 7		27 27 27 28

Single-Chip Octal 10/100Base-TX PHY Transceiver

Track ID: JATR-1076-21 Rev. 1.0

	7.6.	RMII/SMII/SS-SMII	29
	7.6.1	. RMII (Reduced MII)	
	7.6.2	. SMII (Serial MII)	
	7.6.3	. SS-SMII (Source Synchronous-Serial MII)	
	7.7.	POWER SAVING AND POWER DOWN MODE	
	7.7.1	8	
	7.7.2	0	
	7.8.	LED CONFIGURATION	
	7.8.1		
	7.8.2		
	7.9.	CROSSOVER DETECTION AND AUTO CORRECTION	
	7.10.	POLARITY DETECTION AND AUTO CORRECTION	
	7.11.	1.8V POWER GENERATION	
	7.12.	CABLE TESTER	
8.	APP	LICATION INFORMATION	45
	8.1.	10BASE-T/100BASE-TX APPLICATION	
9.	СНА	RACTERISTICS	
	9.1.	Absolute Maximum Ratings	
	9.2.	OPERATING RANGE	
	9.3.	DC CHARACTERISTICS	
	9.4.	AC CHARACTERISTICS	
	9.5.	DIGITAL TIMING CHARACTERISTICS	
	9.5.1		50
	9.5.2	. RMII Transmit Timing	50
	9.5.3	0	51
	9.5.4	. SMII Transmit Timing	51
	9.5.5	SS-SMII Receive Timing	
	9.5.6		
	9.6.	POWER START UP & INTERNAL RESET SEQUENCE	
	9.7.	THERMAL CHARACTERISTICS	
	9.7.1		
	9.7.2		
10		ECHANICAL DIMENSIONS	
	10.1.	NOTES FOR MECHANICAL DIMENSIONS	57
11	. 0	RDERING INFORMATION	58

iv

List of Tables

TABLE 1.	PIN ASSIGNMENTS TABLE	4
TABLE 2.	MEDIA CONNECTION PINS	5
	POWER AND GROUND PINS	
TABLE 4.	MISCELLANEOUS PINS	6
	RMII/SMII/SS-SMII PINS	
TABLE 6.	SMI (SERIAL MANAGEMENT INTERFACE)	8
TABLE 7.	LED PINS	8
TABLE 8.	MODE CONTROL PINS	9
	TEST PINS	
TABLE 10	. REGISTER DESCRIPTIONS	11
TABLE 11	. Register0: Control	11
TABLE 12	. REGISTER1: STATUS	14
TABLE 13	. REGISTER2: PHY IDENTIFIER 1 REGISTER	16
TABLE 14	. REGISTER3: PHY IDENTIFIER 2 REGISTER	16
TABLE 15	. REGISTER4: AUTO-NEGOTIATION ADVERTISEMENT	16
	. REGISTER5: AUTO-NEGOTIATION LINK PARTNER ABILITY	
TABLE 17	. REGISTER6: AUTO-NEGOTIATION EXPANSION	21
TABLE 18	. Port 1 Register24: Cable Tester Control Register0	22
TABLE 19	. PORT1 REGISTER29: CABLE TESTER CONTROL REGISTER1	23
TABLE 20	. PORT1 REGISTER30: CABLE STATUS REGISTER	23
TABLE 21	SMI READ/WRITE CYCLES	24
TABLE 22	. 4B/5B CODING	27
TABLE 23	RMII/SMII/SS-SMII MODES	29
TABLE 24	. RMII/SMII/SS-SMII SIGNALS	29
TABLE 25	. SMII RECEPTION ENCODING	31
TABLE 26	. SMII TRANSMISSION ENCODING	31
TABLE 27	. Serial LED Mode	34
TABLE 28	. SERIAL LED STATUS	34
TABLE 29	BI-COLOR LED.	36
TABLE 30	SCAN LED	37
TABLE 31	. SCAN LED STATUS	37
TABLE 32	. AN EXAMPLE USING POWER TRANSISTOR 2SB1412	44
TABLE 33	. Absolute Maximum Ratings	46
TABLE 34	. Operating Range	46
TABLE 35	. DC CHARACTERISTICS	47
	AC CHARACTERISTICS	
TABLE 37	. DIGITAL TIMING CHARACTERISTICS	49
TABLE 38	. RMII RECEIVE TIMING	50
TABLE 39	. RMII TRANSMIT TIMING	50
TABLE 40	. SMII Receive Timing	51
	. SMII Transmit Timing	
	. SS-SMII Receive Timing	
TABLE 43	. SS-SMII Transmit Timing	52
	. THERMAL OPERATING RANGE	
TABLE 45	. Thermal Resistances	55
	. Ordering Information	

v

List of Figures

FIGURE 1. PIN ASSIGNMENTS (RTL8208C)	
FIGURE 2. RMII SIGNAL DIAGRAM	
FIGURE 3. SMII SIGNAL DIAGRAM	
FIGURE 4. SMII RECEPTION	
FIGURE 5. SMII TRANSMISSION	
FIGURE 6. SS-SMII SIGNAL DIAGRAM	32
FIGURE 7. SS-SMII RECEPTION	32
FIGURE 8. SS-SMII TRANSMISSION	33
FIGURE 9. 3-BIT SERIAL STREAM MODE	35
FIGURE 10. 2-BIT SERIAL STREAM MODE	35
FIGURE 11. EXTERNAL CIRCUIT FOR 3-BIT SERIAL LED MODE	35
FIGURE 12. EXTERNAL CIRCUIT FOR 2-BIT SERIAL LED MODE	
FIGURE 13. 3-BIT BI-COLOR LED	
FIGURE 14. SCAN LED TIMING FOR MODE 0 AND MODE 1	
FIGURE 15. RISE AND FALL TIMING OF THE SCAN_STATUS AND SCAN_LED TRANSITION	38
FIGURE 16. EXTERNAL CIRCUIT FOR SCAN LED MODE 0	39
FIGURE 17. EXTERNAL CIRCUIT FOR SCAN LED MODE 1	
FIGURE 18. EXTERNAL CIRCUIT FOR SCAN LED MODE 2	41
FIGURE 19. USING A PNP TRANSISTOR TO TRANSFORM 3.3V INTO 1.8V	43
FIGURE 20. USING A PNP TRANSISTOR TO TRANSFORM 2.5V INTO 1.8V	43
FIGURE 21. 10BASE-T/100BASE-TX APPLICATION	45
FIGURE 22. RMII RECEIVE TIMING	
FIGURE 23. RMII TRANSMIT TIMING	50
FIGURE 24. SMII RECEIVE TIMING	
FIGURE 25. SMII TRANSMIT TIMING	
FIGURE 26. SS-SMII RECEIVE TIMING	
FIGURE 27. SS-SMII TRANSMIT TIMING	
FIGURE 28. POWER START UP & INTERNAL RESET SEQUENCE	
FIGURE 29. CROSS-SECTION OF 128-PIN QFP	

vi

1. General Description

The RTL8208C-GR is a single-chip highly integrated 8-port, 10Base-T/100Base-TX Ethernet transceiver implemented in 0.16µm CMOS technology. It is currently the world's smallest Octal-PHY chip package. Flexible hardware settings are provided to configure the various operating modes of the chip.

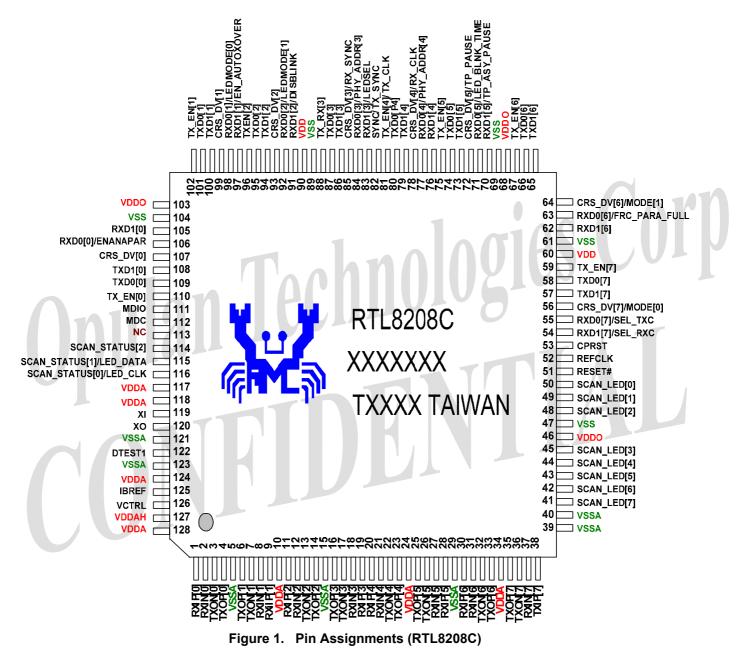
The RTL8208C-GR provides 8 separate and independent channels. Each channel consists of an RMII/SMII/SS-SMII interface-to-MAC controller, and hardware pins are used to configure the interface for RMII, SMII, or SS-SMII mode.

A PECL (Pseudo Emitter Coupled Logic) receiver accepts input from a transceiver and directly passes it to a clock recovery circuit for data/clock recovery. The chip utilizes an advanced CMOS process to meet low voltage and low power requirements. With on-chip DSP (Digital Signal Processing) technology, the chip provides excellent performance under all operating conditions.

A built-in UTP cable tester diagnoses an open/short fault in an attached cable. The RTL8208C-GR also features very low power consumption. Additionally, pin-outs are designed to provide optimized direct routing, which simplifies the layout work and reduces possible EMI noise.

2. Features

- Supports 8-port integrated physical layer and transceiver for 10Base-T and 100Base-TX
- Robust baseline wander correction for improved 100Base-TX performance
- Complies with IEEE 802.3/802.3u
- IEEE 802.3u compliant auto negotiation for 10/100Mbps control
- Hardware controlled Flow control advertisement ability
- Supports RMII/SMII/SS-SMII interfaces
- Very low power consumption
- Supports two power reduction methods:
 - Power saving mode (cable detection)
 - Power down mode


3. Applications

• Octal PHY for Fast Ethernet switch with twisted pair interface

- Power-on auto reset function eliminates the need for external reset circuits
- Crossover detection and auto correction
- Polarity detection and Auto Correction
- Flexible serial/scan LED display modes
- Cable tester for diagnosing open/short faults in attached cables
- 128-pin QFP package
- 1.8V/3.3Vor 1.8V/2.5V power supply
- 0.16μm, CMOS technology

4. Pin Assignments

Note: Signal type codes are listed in section 5 Pin Descriptions, page 5.

4.1. Package Identification

Green package is indicated by a 'G' in the location marked 'T' in Figure 1.

RTL8208C Datasheet

		Tabl	<u>e 1. Pin As</u>	ssignments Table			
Pin Name	Pin#	Function	Driver Capacity	Pin Name	Pin#	Function	Driver Capacity
RXIP[0]	1	AI	-	TXD1[6]	65	I, ND	-
RXIN[0]	2	AI	-	TXD0[6]	66	I, ND	-
TXON[0]	3	AO	-	TX_EN[6]	67	I, ND	-
TXOP[0]	4	AO	-	VDDO	68	DP	-
VSSA	5	AG	-	VSS	69	DG	-
TXOP[1]	6	AO	-	RXD1[5]/TP_ASY_PAUSE	70	I/O, Pd	8mA
TXON[1]	7	AO	-	RXD0[5]/LED BLNK TIME	71	I/O, Pu	8mA
RXIN[1]	8	AI	-	CRS DV[5]/TP PAUSE	72	I/O, Pu	8mA
RXIP[1]	9	AI	_	TXD1[5]	73	I, ND	-
VDDA	10	AP		TXD0[5]	74	I, ND	
RXIP[2]	10	AI	-	TX EN[5]	74	I, ND I, ND	
			-				-
RXIN[2]	12	AI	-	RXD1[4]	76	I/O, Pd	8mA
TXON[2]	13	AO	-	RXD0[4]/ PHY_ADDR[4]	77	I/O, Pd	8mA
TXOP[2]	14	AO	-	CRS_DV[4]/RX_CLK	78	I/O, ND	16mA
VSSA	15	AG	-	TXD1[4]	79	I, ND	-
TXOP[3]	16	AO	-	TXD0[4]	80	I, ND	
TXON[3]	17	AO	-	TX_EN[4]/TX_CLK	81	I, ND	
RXIN[3]	18	AI	-	SYNC/TX_SYNC	82	I, Pd	-
RXIP[3]	19	AI	-	RXD1[3]/LEDSEL	83	I/O, Pd	8mA
RXIP[4]	20	AI	- 1	RXD0[3]/ PHY ADDR[3]	84	I/O, Pu	8mA
RXIN[4]	21	AI		CRS_DV[3]/RX_SYNC	85	I/O, Pu	8mA
TXON[4]	21	AO		TXD1[3]	86	I, ND	
ГХОР[4]	22	AO		TXD0[3]	80	I, ND	
VDDA	23	AO				I, ND I, ND	-
				TX_EN[3] VSS	88	-	-
TXOP[5]	25	AO			89	DG	-
TXON[5]	26	AO		VDD	90	DP	-
RXIN[5]	27	AI	- F	RXD1[2]/DISBLINK	91	I/O, Pd	8mA
RXIP[5]	28	AI	-	RXD0[2]/LEDMODE[1]	92	I/O, Pd	8mA
VSSA	29	AG	-	CRS_DV[2]	93	I/O, Pu	8mA
RXIP[6]	30	AI	-	TXD1[2]	94	I, ND	-
RXIN[6]	31	AI	-	TXD0[2]	95	I, ND	-
TXON[6]	32	AO		TX EN[2]	96	I, ND	-
TXOP[6]	33	AO		RXD1[1]/EN AUTOXOVER	97	I/O, Pu	8mA
VDDA	34	AP	-	RXD0[1]/LEDMODE[0]	98	I/O, Pd	8mA
TXOP[7]	35	AO		CRS DV[1]	99	I/O, Pd	8mA
	36	AO		TXD1[1]	100	I, ND	011174
TXON[7]	100000000.00					-	-
RXIN[7]	37	AI	-	TXD0[1]	101	I, ND	-
RXIP[7]	38	AI	-	TX_EN[1]	102	I, ND	-
VSSA	39	AG	-	VDDO	103	DP	-
VSSA	40	AG		VSS	104	DG	-
SCAN_LED[7]	41	O, Pu	8mA	RXD1[0]	105	I/O, Pd	8mA
SCAN_LED[6]	42	O, Pu	8mA	RXD0[0]/ENANAPAR	106	I/O, Pd	8mA
SCAN_LED[5]	43	O, Pu	8mA	CRS_DV[0]	107	I/O, Pd	8mA
SCAN LED[4]	44	O, Pu	8mA	TXD1[0]	108	I, ND	-
SCAN_LED[3]	45	O, Pu	8mA	TXD0[0]	109	I, ND	-
VDDO	46	DP	-	TX EN[0]	110	I, ND	-
/SS	40	DG	_	MDIO	110	I/O, Pu	8mA
SCAN_LED[2]	47	O, Pu	- 0	MDC	111	I/O, Pu I, Pd	
			8mA			-	-
SCAN_LED[1]	49	O, Pu	8mA	NC	113	-	-
SCAN_LED[0]	50	O, Pu	8mA	SCAN_STATUS[2]	114	O, Pu	8mA
RESET#	51	I, Pu	-	SCAN_STATUS[1]/LED_DATA	115	O, Pu	8mA
REFCLK	52	I/O, Pd	8mA	SCAN_STATUS[0]/LED_CLK	116	O, Pu	8mA
CPRST	53	I, Pd	-	VDDA	117	AP	-
RXD1[7]/ SEL_RXC	54	I/O, Pd	8mA	VDDA	118	AP	-
RXD0[7]/ SEL_TXC	55	I/O, Pd	8mA	XI	119	I, ND	-
CRS_DV[7]/ MODE[0]	56	I/O, Pu	8mA	XO	120	O, ND	-
FXD1[7]	57	I, ND	-	VSSA	120	AG	<u> </u>
TXD0[7]	58	I, ND	_	DTEST1	121	I/O, ND	
	58 59			VSSA	122	AG	-
TX_EN[7]		I, ND	-				-
VDD	60	DP	-	VDDA	124	AP	-
VSS	61	DG	-	IBREF	125	AO	-
RXD1[6]	62	I/O, Pd	8mA	VCTRL	126	AO	-
RXD0[6]/ FRC_PARA_FULL	63	I/O, Pd	8mA	VDDAH	127	AP	
CRS_DV[6]/ MODE[1]	64	I/O, Pu	8mA	VDDA	128	AP	-

Single-Chip Octal 10/100Base-TX PHY Transceiver

4

Track ID: JATR-1076-21 Rev. 1.0

5. Pin Descriptions

In order to reduce pin count, and therefore size and cost, some pins have multiple functions. In such cases the functions are separated with a '/' symbol. Refer to Figure 1, page 3, for a graphical representation.

Signal type codes shown below are used in the previous and following tables:

- I: Input
- P: Power

Internal pull up (30K ohm)

Internal pull down (30K ohm)

G: Ground

Pu:

Pd:

- A: Analog signal
- D: Digital signal
- ND: Not defined

O: Output

5.1. Media Connection Pins

Table 2. Media Connection Pins					
Pin Name	Pin	Туре	Description		
RXIP[7:0]	38, 30, 28, 20, 19,	AI	Receiver Input.		
	11, 9, 1		Differential positive signal shared by 100Base-TX, and 10Base-T.		
RXIN[7:0]	37, 31, 27, 21, 18,	AI	Receiver Input.		
	12, 8, 2		Differential negative signal shared by 100Base-TX, and 10Base-T.		
TXOP[7:0]	35, 33, 25, 23, 16,	AO	Transmitter Output.		
	14, 6, 4		Differential positive signal shared by 100Base-TX, and 10Base-T.		
TXON[7:0]	36, 32, 26, 22, 17,	AO	Transmitter Output.		
	13, 7, 3		Differential negative signal shared by 100Base-TX, and 10Base-T.		

5.2. Power and Ground Pins

Table 3. Power and Ground Pins

Pin Name	Pin	Туре	Description
VDDA	10, 24, 34, 117, 118, 124, 128	AP	1.8V Power to Analog.
VDDAH	127	AP	3.3V or 2.5V Power to Regulator.
VSSA	5, 15, 29, 39, 40, 121, 123	AG	Analog Ground.
VDD	60, 90	DP	1.8V Power to Digital Core.
VDDO	46, 68, 103	DP	3.3V or 2.5V Power to Digital I/O.
VSS	47, 61, 69, 89, 104	DG	Digital Ground.

Single-Chip Octal 10/100Base-TX PHY Transceiver

5.3. Miscellaneous Pins

Pin Name	Pin	Туре	Description
RESET#	51	Ι	Reset.
		(Pu)	This is an active low input. To complete the reset function, this pin must be asserted low for at least 10ms.
XI	119	Ι	25MHz Crystal Input or 25MHz Oscillator Clock Input.
			The clock tolerance is ±50ppm.
			When XI is pulled low, XO must be floating. REFCLK will then be the chip clock input.
XO	120	0	25MHz Crystal Output.
REFCLK	52	IO	Reference Clock.
		(Pd)	If XI is 25MHz active, REFCLK is a 50MHz output.
			If XI is pulled-low (disabled), REFCLK is a clock input as described below:
			RMII mode = 50MHz ±50ppm clock input
1			SMII/SS-SMII mode = 125MHz ±50ppm clock input.
	01		Pin driver capacity = $8mA$.
IBREF	125	AO	Reference Bias Resistor.
	an		When using a 1:1 transformer on Tx/Rx , this pin must be tied to analog ground through an external $2K\Omega$ resistor.
VCTRL	126	AO	Voltage Control.
			This pin controls a PNP transistor to generate the 1.8V power supply for VDD and VDDA pins.
NC	113	-	Not Connected.

RMII/SMII/SS-SMII Pins 5.4.

		Table 5.	RMII/SMII/SS-SMII Pins
Pin Name	Pin	Туре	Description
TXD0[7:0]	58, 66, 74, 80, 87, 95, 101, 109	Ι	Transmit Data Input (bit 0). RMII: TXD0 and TXD1 are the di-bits input, transmitted and driven synchronously to REFCLK from the MAC.
		SMII: TXD0 inputs the data that is transmitted and is driven synchronously to REFCLK. In 100Mbps, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mbps, TXD0 must repeat each 10-bit segment 10 times.	
			SS-SMII: TXD0 behaves as SMII except synchronous to TX_CLK instead of REFCLK and inputs a new 10-bit segment starting with TX_SYNC instead of SYNC.
TXD1[7:0]	57, 65, 73, 79, 86, 94, 100, 108	Ι	Transmit Data Input (bit 1). RMII: TXD1 and TXD0 are the input di-bits synchronously to REFCLK. SMII/SS-SMII: The I/O pin of TXD1 should not be used and must be pulled down.

Pin Name	Pin	Туре	Description
TX_EN[7:0]	59, 67, 75,	Ι	Transmit Enable.
TX_CLK/TX_EN[4]	81, 88, 96, 102, 110		RMII: TX_EN indicates the di-bits on TXD is valid and is synchronous to REFCLK.
			SMII: The I/O pin of TX_EN should not be used and must be pulled down.
			SS-SMII: TX_EN[4] of RMII is used as TX_CLK, which is a 125MHz clock input from MAC.
			The unused I/O pin of TX_EN should not be used and must be pulled down.
RXD0[7:0]		0	Receive Data Input (bit 0).
	55	(Pd)	RMII: RXD0 and RXD1 output di-bits synchronously to REFCLK.
	63	(Pd)	SMII: RXD0 outputs data or in-band management information
	71	(Pu)	synchronously to REFCLK. In 100Mbps, RXD0 outputs a new 10-
	77	(Pd)	bit segment starting with SYNC. In 10Mbps, RXD0 must repeat
	84	(Pu)	each 10-bit segment 10 times.
	92	(Pd)	SS-SMII: RXD0 behaves as SMII except synchronous to RX_CLK instead of REFCLK and inputs a new 10-bit segment starting with
	98	(Pd)	RX SYNC instead of SYNC.
	106	(Pd)	All pins driver capacity = $8mA$
RXD1[7:0]		0	Receive Data Input (bit 1).
	54	(Pd)	RMII: RXD1 and RXD0 output di-bits synchronously to REFCLK.
	-62	(Pd)	SMII/SS-SMII: The I/O pin of RXD1 should not be used.
	70	(Pd)	All pins driver capacity = $8mA$
	76	(Pd)	
	83	(Pd)	
	91	(Pd)	
	97	(Pu)	
	105	(Pd)	
CRS_DV[7:0]		0	Carrier Sense and Data Valid.
RX_SYNC/CRS_DV[3]	56	(Pu)	RMII: CRS_DV is asynchronous to REFCLK and asserts when the
RX_CLK/CRS_DV[4]	64	(Pu)	medium is non-idle.
	72	(Pu)	SMII: CRS_DV[7:0] are not used and driven low.
	78 (16mA)	(ND)	SS-SMII: CRS_DV[3] of RMII is used as RX_SYNC which is a
	85	(Pu)	sync signal used to delimit the 10-bit segment of RXD0 for all ports.
	93	(Pu)	CRS_DV[4] of RMII is used as RX_CLK, which is a 125MHz clock
	99	(Pd)	output. CRS_DV[7:5] and CRS_DV[2:0] are not used.
	07	(Pd)	All pins driver capacity = 8mA, except pin 78 (16mA).
SYNC/	82	Ι	Sync/Transmit Synchronous.
TX_SYNC		(Pd)	SMII: SYNC is a sync signal used to delimit a 10-bit segment of
			RXD0 and TXD0 for all ports.
			SS-SMII: TX_SYNC is a sync signal used to delimit the 10-bit segment of TXD0 for all ports.
			segment of 17120 for un ports.

SMI (Serial Management Interface) 5.5.

Table 6	SMI (Sori	al Managomont Into	rfaca)
i able 6.	SIMI (Seria	al Management Inte	errace)

Pin Name	Pin	Туре	Description
MDIO	111	IO	Management Data I/O. Bi-directional data interface. A 1.5KΩ pull-
		(Pu)	up resistor is required (as specified in IEEE802.3u).
			The MAC controller access of the MII registers should be delayed at
			least 700µs after completion of the reset because of the internal reset operation of the RTL8208C-GR
			Pin driver capacity = 8 mA.
MDC	112	Ι	Management Data Clock. 0 to 2.5MHz clock sourced by MAC to
		(Pd)	sample MDIO.
		()	The MAC controller access of the MII registers should be delayed at
			least 700µs after completion of the reset because of the internal reset
			operation of the RTL8208C-GR

			least 700µs after completion of the reset because of the internal reset operation of the RTL8208C-GR
5.6. LED Pins	n	F A	chnologies Uur
Din Norm	D:u		able 7. LED Pins
Pin Name SCAN LED[7:0]	Pin 41, 42, 43,	Type O	Description In Scan LED mode, SCAN_LED[7:0] is the Scan LED port enable.
SCAR_LED[7.0]	41, 42, 43, 44, 45, 48, 49, 50	(Pu)	See section 7.8 LED Configuration, page 34. All pins driver capacity = 8mA.
SCAN_STATUS[2:0]	114, 115, 116	O (Pu)	In Scan LED mode, SCAN_STATUS[2:0] outputs (Col/Fulldup, Link/Act, Spd) for each port.
LED_CLK/SCAN_ STATUS[0]			In serial LED mode, SCAN_STATUS[0] is used as LED_CLK, which outputs the reference clock for the serial LED signals.
LED_DATA/SCAN_ STATUS[1]			In serial LED mode, SCAN_STATUS[1] is used as LED_DATA, which outputs serial status bits that can be shifted into a shift register to be displayed via LEDs. LED_DATA is output synchronously to LED_CLK. All pins driver capacity = 8mA.

5.7. Mode Control Pins

Pin Name	Pin	Туре	Description	
PHY ADDR[4:3]/	77, 84	IO	PHY Address (Default = 2'b01).	
RXD0[4:3]	-	(Pd, Pu)	These 2 bits determine the highest 2 bits of the 5-bit PHY address upon	
			reset.	
			We recommend using a resistor to pull up or pull down.	
MODE[1:0]/	64, 56	IO	Select RMII/SMII/SS-SMII Mode (Default = 2'b11).	
CRS_DV[6:7]		(Pu, Pu)	2'b1x: RMII	
			2'b00: SMII	
			2'b01: SS-SMII	
			We recommend using a resistor to pull up or pull down.	
TP_PAUSE/	72	IO	Twisted Pair Pause Capability (Default =1).	
CRS_DV[5]		(Pu)	Sets the Flow control ability of Reg.4.10 for UTP ports upon power-on	
			reset.	
			1: With flow control ability	
			0: Without flow control ability	
TP_ASY_PAUSE/	70	IO	Twisted Pair Asymmetric Pause Capability (Default =0).	
RXD1[5]		(Pd)	Sets the Asymmetric Flow control ability of Reg.4.11 for UTP ports upon	
			power-on reset.	
			1: With asymmetric flow control ability	
			0: Without asymmetric flow control ability	
EN_AUTOXOVER/	97	IO	Enable Auto Crossover Detection (Default =1).	
RXD1[1]		(Pu)	1: Enable auto crossover detection	
			0: Disable auto crossover detection	
DISBLINK/	91	IO	Disable Power-On/Reset LED Blinking: (Default = 0)	
RXD1[2]		(Pd)	1: Disable power-on LED blinking	
			0: Blink	
LED_BLNK_TIME/	71	IO	LED Blink Time (Default=1).	
RXD0[5]		(Pu)	Controls the blinking speed of activity and collision LEDs.	
			1: 43ms (recommended to use external 10K pull up resistor)	
			0: 120ms	
LEDSEL/RXD1[3]	83	IO	LED Selection (Default=1'b0).	
		(Pd)	LEDSEL	
		×/	1'b1: Scan LED	
			1'b0: Serial LED	

Pin Name	Pin	Туре	Description				
LEDMODE[1:0]/	92, 98	IO	LEDMODE[1:0] (Default=00).				
RXD0[2:1]		(Pd, Pd)	When using the RTL8208C LED solution, we recommend using an				
			external resistor to	o pull high or pull l	OW.		
			In Serial LED, LE	EDMODE[1:0] con	trols the forms of serial LED status.		
			LEDMODE Mode Output				
			2'b00	3-bit serial stream	n Col/Fulldup, Link/Act, Spd		
			2'b01	2-bit serial stream	n Spd, Link/Act		
			2'b10	3-bit for Bi-color LED	r Col/Fulldup, Link/Act, Spd		
			2'b11	1-bit serial stream	n Link/Act/Spd		
			SCAN_STATUS[2				
			LEDMODE	Mode	Output		
			2'b00	Mode 0	Col/Fulldup, Link/Act, Spd		
			2'b01	Mode 1	RX, TX, Link		
1			2'b10	Mode 2	NC, Bi-color Link/Act/Spd, NC		
	nn		2'b11	Reserved	<u> </u>		
FRC_PARA_FULL/	63	IO		when link is establ	ished by parallel detection		
RXD0[6]		(Pd)	(default=0).				
N J U V A			-		ablished by parallel detection		
			0: Normal operation				
SEL_RXC/RXD1[7]	54	IO			ck to Output Delay of RXD.		
		(Pd)		on falling edge of 1			
				on rising edge of re	eceive clock		
			Recommended to set SEL_RXC=1.				
			In SS-SMII, SEL_RXC, must be set to 1.				
SEL_TXC/RXD0[7]	55	IO	In SMII, SEL_TXC Control the Clock to Output Delay of TXD.				
		(Pd)	0: Clock out data on falling edge of transmit clock 1: Clock out data on rising edge of transmit clock				
				00	ansmit clock		
			Recommended to	_	4 1		
			In SS-SMII, SEL	TXC, must be set	to 1.		

5.8. Test Pins

Table 9. Test Pins				
Pin Name	Pin	Туре	Description	
ENANAPAR/	106	IO	Enable Analog Parameter Write (Default =0).	
RXD0[0]		(Pd)	1: Enable analog parameter write operation	
			0: Disable analog parameter write operation	
CPRST	53	Ι	Reserved for Internal Use.	
		(Pd)	Must be pulled down.	
DTEST1	122	IO	Reserved for Internal Use.	
			Must be left floating.	

Single-Chip Octal 10/100Base-TX PHY Transceiver

Track ID: JATR-1076-21 Rev. 1.0

Register Descriptions 6.

The first six registers of the MII are defined by the MII specification. Other registers are defined by Realtek for internal use.

Signal type codes below are used in the following tables:

- RO: Read Only LL: Latch Low until cleared
- RW: Read/Write

LH: Latch High until cleared

SC: Self Clearing

RegisterDescription0Control Register.1Status Register.2PHY Identifier 1 Register.3PHY Identifier 2 Register.4Auto-Negotiation Advertisement Register.5Auto-Negotiation Link Partner Ability Register.6Auto-Negotiation Expansion Register.	
1 Status Register. 2 PHY Identifier 1 Register. 3 PHY Identifier 2 Register. 4 Auto-Negotiation Advertisement Register. 5 Auto-Negotiation Link Partner Ability Register.	
2 PHY Identifier 1 Register. 3 PHY Identifier 2 Register. 4 Auto-Negotiation Advertisement Register. 5 Auto-Negotiation Link Partner Ability Register.	
3 PHY Identifier 2 Register. 4 Auto-Negotiation Advertisement Register. 5 Auto-Negotiation Link Partner Ability Register.	
4 Auto-Negotiation Advertisement Register. 5 Auto-Negotiation Link Partner Ability Register.	
5 Auto-Negotiation Link Partner Ability Register.	
6 Auto-Negotiation Expansion Register.	

Register0: Control 6.1.

Table 11. Register0: Control

Reg. bit	Name	Description	Туре	Default
0.15	Reset	1: PHY reset. This bit is self-clearing.	RW/SC	0
0.14	Loopback	This will loopback TXD to RXD and ignore all activity on the cable media.	RW	0
		1: Enable loopback		
		0: Normal operation		
0.13	Spd_Sel	When NWay is enabled, this bit reflects the auto negotiation result (Read Only).	RW	0
		When NWay is disabled, this bit can be set by SMI*. (Read/Write).		
0.12	Auto Negotiation	This bit can be set through SMI (Read/Write).	RW	1
	Enable	1: Enable auto negotiation process		
		0: Disable auto negotiation process		
0.11	Power Down	1: Power down. All functions will be disabled except SMI read/write function	RW	0
		0: Normal operation		
0.10	Isolate	1: Electrically isolate the PHY from RMII/SMII/SS-SMII.	RW	0
		PHY is still able to respond to MDC/MDIO		
		0: Normal operation		

RTL8208C Datasheet

Reg. bit	Name	Description	Туре	Default
0.9	Restart Auto	1: Restart Auto-Negotiation process	RW/SC	0
	Negotiation	0: Normal operation		
0.8	Duplex Mode	When NWay is enabled, this bit reflects the result of auto negotiation (Read Only). When NWay is disabled, this bit can be set by SMI* (Read/Write).	RW	0
0.[7:0]	Reserved	Reserved	RO	0

Note: SMI: Serial Management Interface composed of MDC, MDIO, that allows the MAC to manage the PHY.

Reset

In order to reset the RTL8208C-GR using software control, a '1' must be written to bit 15 using an SMI write operation. The bit clears itself after the reset process has completed. Writes to other Control register bits will have no effect until the reset process has completed (approximately 1μ s). Writing a '0' to this bit has no effect. Because this bit is self-clearing after a few cycles from a write operation, it will return a '0' when read.

Loopback

The RTL8208C-GR may be placed into loopback mode by writing a '1' to bit 14. Loopback mode may be cleared either by writing a '0' to bit 14 or by resetting the chip. When this bit is read, it will return a '1' when the chip is in software-controlled loopback mode, otherwise it will return a '0'.

Speed Selection

If auto negotiation is enabled, this bit has no effect on the speed selection. However, if auto negotiation is disabled using software control, the operating speed of the RTL8208C-GR can be forced by writing the appropriate value to bit 13. Writing a '1' to this bit forces 100Base-X operation, while writing a '0' forces 10Base-T operation. When this bit is read, it returns the value of the software-controlled forced-speed selection only.

Auto Negotiation Enable

Default is auto negotiation enabled for all TP ports. Auto negotiation can be disabled via software control by setting 0.12=0.

Power Down

The RTL8208C-GR supports a low power mode. Writing a '1' will enable power down mode, and writing a '0' will return the RTL8208C-GR to normal operation. When read, this register will return a '1' when in power down mode, and a '0' during normal operation.

Isolate

Each PHY may be isolated from its MII by writing a '1' to bit 10. All MII outputs will be tri-stated and all MII inputs will be ignored. Since the MII management interface is still active, the isolate mode may be cleared either by writing a '0' to bit 10 or by resetting the chip. When this bit is read, it will return a '1' when the chip is in isolate mode, and return a '0' during normal operation.

Restart Auto Negotiation

Bit 9 is a self-clearing bit that allows the auto negotiation process to be restarted, regardless of the status of the auto negotiation state machine. In order for this bit to have an effect, auto negotiation must be enabled. Writing a '1' to this bit restarts auto negotiation. Writing a '0' to this bit has no effect. When this bit is read, it will always return a '0'.

Duplex Mode

By default, the RTL8208C-GR powers up in half duplex mode. The chip can be forced into full duplex mode by writing a '1' to bit 8 while auto negotiation is disabled. Half duplex mode can be resumed either by writing a '0' to bit 8 or by resetting the chip. When NWay is enabled, this bit reflects the results of auto negotiation, and is in read-only mode. When NWay is disabled, this bit can be set through the SMI, and is in Read/Write mode.

Reserved Bits

All reserved MII register bits must be written as '0' at all times. Ignore the RTL8208C-GR output when these bits are read.

6.2. Register1: Status

Table 12. Register1: Status

Reg. bit	Name	Description	Туре	Default
1.15	100Base_T4	0: No 100Base-T4 capability (permanently =0)	RO	0
1.14	100Base_TX_FD	1: 100Base-TX full duplex capable	RO	1
		0: Not 100Base-TX full duplex capable		
1.13	100Base_TX_HD	1: 100Base-TX half duplex capable	RO	1
		0: Not 100Base-TX half duplex capable		
1.12	10Base_T_FD	1: 10Base-TX full duplex capable	RO	1
		0: Not 10Base-TX full duplex capable		
1.11	10Base_T_HD	1: 10Base-TX half duplex capable	RO	1
		0: Not 10Base-TX half duplex capable		
1.[10:7]	Reserved	Reserved.	RO	0
1.6	MF Preamble	The RTL8208C-GR will accept management frames with preamble suppressed.	RO	
1.5	Suppression		DO	0
1.5	Auto-negotiate	1: Auto-negotiation process completed. Reg.4.5 are valid if this bit is set	RO	0
	Complete	0: Auto-negotiation process not completed		
1.4	Remote Fault	1: Remote fault indication from link partner has been detected.	RO/LH	0
1.4	Kennote Fault	0: No remote fault indication detected	KO/LII	0
	JV	This bit will remain set until it is cleared by reading register 1		
		via the management interface.		
1.3	Auto-Negotiation	1: NWay auto negotiation capable (permanently =1)	RO	1
	Ability	0: No auto negotiation capability		
1.2	Link Status	1: Link has not failed since previous read	RO/LL	0
		0: Link has failed since previous read		
1		If the link fails, this bit will be set to 0 until read.		
1.1	Jabber Detect	1: Jabber detected.	RO/LH	0
		0: No Jabber detected		
		The jabber function is disabled in 100Base-X mode. Jabber is		
		supported only in 10Base-T mode.		
1.0	Extended Capability	1: Extended register capable (permanently =1)	RO	1
		0: Not extended register capable		

100Base_T4

The RTL8208C-GR does not support the T4 function. Any reads to this bit will return a '0'.

14

100Base_TX_FD

The RTL8208C-GR is capable of operating in 100Base-TX full duplex mode.

100Base_TX_HD

The RTL8208C-GR is capable of operating in 100Base-TX half duplex mode.

10Base_T_FD

The RTL8208C-GR is capable of operating in 10Base-T full duplex mode.

10Base_T_HD

The RTL8208C-GR is capable of operating in 10Base-T half duplex mode.

Reserved

Ignore the output of the RTL8208C-GR when these bits are read.

MF Preamble Suppression

Management Frame Preamble Suppression is permanently set in the RTL8208C-GR, allowing MII management frames to be accepted, with or without the standard preamble pattern. Only two preamble bits are required between successive management commands, instead of the normal 32. However, a minimum of 32 preamble bits are required for the first SMI read/write transaction after reset. One idle bit is required between any two management transactions (as defined in the IEEE 802.3u spec). Reads of this bit will always return a '1'.

Auto-Negotiation Complete

Bit 5 will return a '1' if the auto negotiation process has been completed and the contents of registers 4 and 5 are valid.

Remote Fault

When the link partner detects a far-end fault, it sends a far-end indication stream pattern. When the RTL8208C-GR receives this pattern, it sets Reg1.4=1.

Auto-Negotiation Ability

The RTL8208C-GR is capable of performing IEEE auto negotiation, and will return a '1' when bit 4 is read, regardless of whether or not the auto negotiation function has been disabled.

Link Status

The RTL8208C-GR will return a '1' on bit 2 when the link state machine is in Link Pass, indicating that a valid link has been established. Otherwise, it will return '0'. When a link failure occurs after the link pass state has been entered, the Link Status bit will be latched at '0' and will remain so until the bit is read. After the bit is read, it becomes '1' if the Link Pass state has been entered again.

Jabber Detect

The RTL8208C-GR will return a '1' on bit 1 if a jabber condition has been detected. After the bit is read, or if the chip is reset, it reverts to '0'. This is for 10Base-T only. Jabber occurs when a predefined excessively long packet is detected in 10Base-T mode. When the duration of TX_EN exceeds the jabber timer (21ms), transmit and loopback functions are disabled and the COL LED starts blinking. After TX_EN goes low for more than 500ms, the transmitter is re-enabled and the COL LED stops blinking.

Extended Capability

The RTL8208C-GR supports extended capability registers and will return a '1' when bit 0 is read. Several extended registers have been implemented in the RTL8208C-GR.

6.3. Register2: PHY Identifier 1 Register

The PHY Identifier Registers #1 and #2 together form a unique identifier for the PHY section of this device. The Identifier consists of a concatenation of the Organizationally Unique Identifier (OUI), the vendor's model number, and the model revision number. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier if desired. The PHY Identifier is intended to support network management.

Table 13. Register2: PHY Identifier 1 Register					
Reg. bit	Name	Description	Туре	Default	
2.[15:0]	OUI	Composed of the 3 rd to 18 th Bits of the Organizationally	RO	001C h	
		Unique Identifier (OUI).	V `		

6.4. Register3: PHY Identifier 2 Register

Reg. bit	Name	Description	Туре	Default
3.[15:10]	OUI	Assigned to the 19 th through 24 th Bits of the OUI.	RO	110010
3.[9:4]	Model Number	Manufacturer's Model Number.	RO	001000
3.[3:0]	Revision Number	Manufacturer's Revision Number.	RO	0001

6.5. Register4: Auto-Negotiation Advertisement

This register contains the advertisement abilities of this device that will be transmitted during autonegotiation.

Table 13. Register4. Auto-Negotiation Auventisement						
Reg. bit	Name	Description	Туре	Default		
4.15	Next Page	1: Next Page enabled	RO	0		
		0: Next Page disabled (Permanently =0)				
4.14	Acknowledge	Permanently=0.	RO	0		
4.13	Remote Fault	1: Transmit remote fault	RW	0		
		0: Do not transmit remote fault				
4.12	Reserved	Reserved.	RW	0		

Table 15. Register4: Auto-Negotiation Advertisement

RTL8208C Datasheet

Reg. bit	Name	Description	Туре	Default
4.11	Asymmetric Pause	1: Advertises that the RTL8208C-GR has asymmetric	RW	Set by
		flow control capability		TP ASY PAUSE
		0: No asymmetric flow control capability		
		In 100/10TP mode, this bit is set by TP_ASY_PAUSE		
		upon reset.		
4.10	Pause	1: Advertises that the RTL8208C-GR has flow control	RW	Set by
		capability		TP_PAUSE
		0: No flow control capability		
		In 100/10TP mode, this bit is set by TP_PAUSE upon		
		reset.		
4.9	100Base-T4	1: 100Base-T4 capable	RO	0
		0: Not 100Base-T4 capable (permanently=0)		
4.8	100Base-TX-FD	1: 100Base-TX full duplex capable	RW	1
		0: Not 100Base-TX full duplex capable		
4.7	100Base-TX	1: 100Base-TX half duplex capable	RW	1
		0: Not 100Base-TX half duplex capable		
4.6	10Base-T-FD	1: 10Base-TX full duplex capable	RW	1
		0: Not 10Base-TX full duplex capable		
4.5	10Base-T	1: 10Base-TX half duplex capable	RW	1
		0: Not 10Base-TX half duplex capable		
4.[4:0]	Selector Field	[00001]=IEEE 802.3.	RO	00001

Next Page

The RTL8208C-GR does not implement the Next Page function, so bit 15 will always return a '0' when read.

Acknowledge

As the Next Page function is not implemented, bit 14 will always return a '0' when read.

Remote Fault

Writing a '1' to this bit causes a remote fault indicator to be sent to the link partner during autonegotiation.

Reserved

Reserved bits are R/W to allow for forward compatibility with future IEEE standards.

Asymmetric Pause

Setting this bit indicates the availability of Asymmetric Flow Control capabilities when full duplex operation is in use. This bit is used by one MAC to communicate Asymmetric Pause Capability to its Link Partner and has no effect on PHY operation.

Pause

Setting this bit indicates the availability of Flow Control capabilities when full duplex operation is in use. This bit is used by one MAC to communicate Pause Capability to its Link Partner and has no effect on PHY operation.

100Base-T4

As the RTL8208C-GR does not support the T4 function, any reads to this bit will return a '0'.

100Base-TX-FD

This bit advertises that the RTL8208C-GR can operate in 100Base-TX full duplex mode. Writing a '0' to this bit will suppress advertising of this ability. Resetting the chip restores the default value. The default value is '1' and writing a '1' will set this bit to '1'. Reading this bit will return the last written value, or the default value if no write has been completed since the last reset.

100Base-TX

This bit advertises that the RTL8208C-GR can operate in 100Base-TX half duplex mode. Writing a '0' to this bit will suppress advertising of this ability. Resetting the chip will restore the default value. The default value is '1' and writing a '1' will set this bit to '1'. Reading this bit will return the last written value, or the default value if no write has been completed since the last reset.

10Base-T-FD

This bit advertises that the RTL8208C-GR can operate in 10Base-T full duplex mode. Writing a '0' to this bit will suppress advertising of this ability. Resetting the chip will restore the default value. The default value is '1' and writing a '1' will set this bit to '1'. Reading this bit will return the last written value, or the default value if no write has been completed since the last reset.

10Base-T

This bit advertises that the RTL8208C-GR can operate in 10Base-T half duplex mode. Writing a '0' to this bit will suppress advertising of this ability. Resetting the chip will restore the default value. The default value is '1' and writing a '1' will set this bit to '1'. Reading this bit will return the last written value, or the default value if no write has been completed since the last reset.

Selector Field

Bits 4:0 contain a fixed value of 00001, indicating that the chip belongs to the IEEE 802.3 class of PHY transceivers.

6.6. Register5: Auto-Negotiation Link Partner Ability

This register contains the advertised abilities of the Link Partner as received during auto negotiation. The content changes after successful auto negotiation.

Reg. bit	Name	Description	Туре	Default
5.15	Next Page	1: Link partner desires Next Page transfer	RO	0
		0: Link partner does not desire Next Page transfer		
5.14	Acknowledge	1: Link Partner acknowledges reception of FLP words	RO	0
		0: No acknowledgement by Link Partner		
5.13	Remote Fault	1: Remote Fault indicated by Link Partner	RO	0
		0: No remote fault indicated by Link Partner		101
5.12	Reserved	Reserved	RO	0
5.11	Asymmetric Pause	1: Asymmetric Flow control supported by Link Partner	RW	0
		0: No Asymmetric flow control supported by Link Partner		
	1	When auto-negotiation is enabled, this bit reflects Link		
		Partner ability (read only).		
5.10	Pause	1: Flow control supported by Link Partner	RW	0
		0: No flow control supported by Link Partner		
		When auto-negotiation is enabled, this bit reflects Link		
		Partner ability (read only).		
5.9	100Base-T4	1: 100Base-T4 supported by Link Partner	RO	0
		0: 100Base-T4 not supported by Link Partner		
5.8	100Base-TX-FD	1: 100Base-TX full duplex supported by Link Partner	RO	0
		0: 100Base-TX full duplex not supported by Link Partner		
		When auto-negotiation is disabled, this bit is set when		
		Reg.0.13=1 and Reg.0.8=1.		
5.7	100Base-TX	1: 100Base-TX half duplex supported by Link Partner	RO	0
		0: 100Base-TX half duplex not supported by Link Partner		
		When auto-negotiation is disabled, this bit is set when		
		Reg.0.13=1 and Reg.0.8=0.		
5.6	10Base-T-FD	1: 10Base-TX full duplex supported by Link Partner	RO	0
		0: 10Base-TX full duplex not supported by Link Partner		
		When auto-negotiation is disabled, this bit is set when		
	100	Reg.0.13=0 and Reg.0.8=1.	D O	^
5.5	10Base-T	1: 10Base-TX half duplex supported by Link Partner	RO	0
		0: 10Base-TX half duplex not supported by Link Partner		
		When auto-negotiation disabled, this bit is set when Reg.0.13=0 and Reg.0.8=0.		
5.[4:0]	Selector Field	[00001]=IEEE 802.3.	RO	00001
ניידן.י	Selector Field		NU	00001

Table 16. Register5: Auto-Negotiation Link Partner Ability

Note: The values are only guaranteed to be valid once auto-negotiation has successfully completed, as indicated by bit 5 of the MII Status Register.

Next Page

Bit 15 returns a value of '1' when the Link Partner implements the Next Page function and has Next Page information that it wants to transmit. However, since the RTL8208C-GR does not implement the Next Page function, it ignores the Next Page bit, except to copy it to this register.

Acknowledge

Bit 14 is used by auto negotiation to indicate that a device has successfully received its Link Partner's Link Code Word.

Remote Fault

Bit 13 returns a value of '1' when the Link Partner signals that a fault has occurred.

Reserved

Not defined by the IEEE 802.3 standard.

Asymmetric Pause

Indicates that the Link Partner asymmetric pause bit is set.

Pause

Indicates that the Link Partner pause bit is set.

100Base-T4

Though the RTL8208C-GR does not support the T4 function, this bit reflects the T4 ability of the Link Partner.

100Base-TX-FD

This bit indicates that the Link Partner can support 100Base-TX full duplex mode. This bit is cleared any time auto negotiation is restarted or the RTL8208C-GR is reset.

100Base-TX

This bit indicates that the Link Partner can support 100Base-TX half duplex mode. This bit is cleared any time auto negotiation is restarted or the RTL8208C-GR is reset.

10Base-T-FD

This bit indicates that the Link Partner can support 10Base-T full duplex mode. This bit is cleared any time auto negotiation is restarted or the RTL8208C-GR is reset.

10Base-T

This bit indicates that the Link Partner can support 10Base-T half duplex mode. This bit is cleared any time auto negotiation is restarted or the RTL8208C-GR is reset.

Selector Field

Bits 4:0 reflect the value of the Link Partner's selector field. These bits are cleared each time auto negotiation is restarted or the chip is reset, and generally reflects the value 0001, indicating that the Link Partner is an IEEE 802.3 device.

6.7. Register6: Auto-Negotiation Expansion

Reg. bit	Name	Description	Туре	Default
6.[15:5]	Reserved	Reserved	RO	0
6.4	Parallel Detection Fault	1: A fault has been detected via the Parallel Detection If function		0
		0: No fault has been detected via the Parallel Detection function		
6.3	Link Partner Next	1: Link Partner is Next Page able	RO	0
	Page Able	0: Link Partner is not Next Page able		
6.2	Local Next Page Able	1:RTL8208C-GR is Next Page able	RO	0
		0: RTL8208C-GR is not Next Page able (permanently=0)		
6.1	Page Received	1: A New Page has been received	RO/LH	0
	JV	0: A New Page has not been received		
6.0	Link Partner Auto-	If Auto-Negotiation is enabled, this bit means:	RO	0 (Auto-
	Negotiation Able	1: Link Partner is Auto-Negotiation able Negotiation)		
		0: Link Partner is not Auto-Negotiation able.		

Table 17. Register6: Auto-Negotiation Expansion

Reserved

Ignore the output of the RTL8208C-GR when these bits are read.

Parallel Detection Fault

Bit 4 is a read-only bit that is latched high when a parallel detection fault occurs in the auto negotiation state machine. For further details, consult the IEEE 802.3 standard. The bit is reset to '0' after the register is read, or when the chip is reset.

Link Partner Next Page Able

Bit 3 returns a '1' when the Link Partner has Next Page capabilities. It has the same value as bit 15 of the Link Partner Ability Register.

Local Next Page Able

The RTL8208C-GR does not have Next Page capabilities, so it will always return a '0' when bit 2 is read.

Page Received

Bit 1 is latched high when a new link code word is received from the Link Partner, checked, and acknowledged. This bit is cleared when the link is lost or the chip is reset.

Link Partner Auto-Negotiation Able

Bit 0 returns a '1' once the Link Partner is known to have auto negotiation capabilities. Before any auto negotiation information is exchanged, or if the Link Partner does not comply with IEEE auto negotiation, the bit returns a value of '0'.

6.8. Port 1 Register24: Cable Tester Control Register0

	Table 18. I	Port 1 Register24: Cable Tester Control Register0		
Reg. bit	Name	Description	Туре	Default
15:13	Port Selection	Port Selection for Cable Test.	RW	000
12	Reserved	Must be Set to the Default Value.	RW	0
11	ENRTCT	1: Run cable test	RW	0
		0: Stop cable test		
10:8	Reserved	Must be Set to the Default Value.	RW	111
7:0	Reserved	Must be Set to the Default Value.	RW	0x80
	Port Selec	ction000: Select Port 0 to run cable test 001: Select Port 1 to run cable test 010: Select Port 2 to run cable test 011: Select Port 3 to run cable test	A	
		100: Select Port 4 to run cable test		

101: Select Port 5 to run cable test 110: Select Port 6 to run cable test 111: Select Port 7 to run cable test

ENRTCT – Set to '1' to run the UTP cable test, and set to '0' after completion of the cable test process.

6.9. Port1 Register29: Cable Tester Control Register1

Table 19. Port1 Registe	er29: Cable Tester C	ontrol Register1
		ond of Register i

Reg. bit	Name	Description	Туре	Default
15	Reserved	Must be Set to the Default Value.	RW	0
14	SELTX	1: Cable test on TX pair	RW	0
		0: Cable test on RX pair		
13	Reserved	Must be Set to the Default Value.	RW	0
12	Reserved	Must be Set to the Default Value. RW		1
11:0	Reserved	Must be Set to the Default Value.	RW	0x7d0

SELTX	0: Select RX_Pair (pair 1/2) to run cable test
	1: Select TX_Pair (pair 3/6) to run cable test

6.10. Port1 Register30: Cable Status Register

Table 20. Port1 Register30: Cable Status Register

			4	
Reg. bit	Name	Description	Туре	Default
15	RTCT_RDY	1: Cable test status is ready	RO	0
		0: Cable test status is not ready		
14 📕	Reserved	Reserved	RO	0
13:12	Status	Cable Tester Status.	RO	00
		00: Normal cable 01: Open in cable		
		10: Short in cable 11: Reserved		
11:9	Reserved	Reserved	RO	0
8:0	Distance	Distance of Reflection.	RO	0

RTCT_RDY

This bit will return a '1' if the cable test process has been completed and the contents of Status and Distance are valid.

Status

Cable test status is valid after completion of cable test process.

Distance

These bits (in decimal) divided by 4 equal the approximate distance (meters) to the open/short fault location.

23

These bits are valid after completion of the cable test process.

7. Function Description

7.1. General

7.1.1. SMI (Serial Management Interface)

SMI (Serial Management Interface) is also known as MII Management Interface and consists of two signals, MDIO and MDC, that allow the MAC controller to control and monitor the state of the PHY. MDC is a clock input for PHY to latch MDIO on its rising edge. The clock can run from DC to 2.5MHz. MDIO is a bi-directional connection used to write data to, or read data from the PHY. The PHY address base is set by pins PHY_ADDR[4:3], and the eight port addresses of the RTL8208C-GR are internally 000, 001, 010, 011, 100, 101, 110, and 111.

	Table 21. SMI Read/Write Cycles								
	Preamble	Start	OP Code	PHYAD	REGAD	Turnaround	Data	Idle	
	(32 bits)	(2 bits)	(2 bits)	(5 bits)	(5 bits)	(2 bits)	(16 bits)		
Read	11	01	10	AAAAA	RRRRR	ZO	DD	Z*	
Write	11	01	01	AAAAA	RRRRR	10	DD	Z*	

Note1: *Z: high-impedance. During idle time, MDIO state is determined by an external 1.5KΩ pull-up resistor. Note2: The RTL8208C-GR supports Preamble Suppression, which allows the MAC to issue Read/Write Cycles without preamble bits (but needs at least one Idle for every cycle). However, for the first MII management cycle after power-on reset, a 32-bit preamble is needed. To guarantee the first successful SMI transaction after power-on reset, the MAC should be delayed at least 700µs to issue the first SMI Read/Write Cycle relative to the rising edge of reset.

7.1.2. PHY Address

Each transceiver in the RTL8208C-GR has a unique PHY address for MII management. The address is set through the PHY address pins. The pins are latched at the trailing end of a reset. Transceiver 1 will have the address AA000, where AA=PHYAD [4:3]. Each internal PHY address is AA000, AA001, AA010, AA011, AA100, AA101, AA110, AA111. Every time an SMI write or read operation is executed, the transceiver compares the PHY address with its own PHY address definition, and the operation is executed only when the addresses match.

7.1.3. Auto-Negotiation

For 10/100Mbps TP ports, the RTL8208C-GR default setup is Auto-Negotiation enabled. Setting Register 0.12=0 via an SMI write will disable Auto-Negotiation.

For an Auto-Negotiation enabled port, the RTL8208C-GR will negotiate with its link partner to determine the speed and duplex status. The RTL8208C-GR's ability is advertised in Register 4. After Auto-Negotiation is finished, the link partner's ability is stored in Register 5.

If the link partner is Auto-Negotiation disabled, the RTL8208C-GR enters a parallel-detection state to identify the speed of the link partner. The RTL8208C-GR will link at the same speed as the link partner, in half duplex mode if FRC_PARA_FULL=0 upon reset, or in full duplex mode if FRC_PARA_FULL=1 upon reset.

Auto-Negotiation is also used to determine full-duplex flow control. Flow control ability is advertised in Register 4.10. The link partner's flow control ability is stored in Register 5.10. See the following section for more information.

7.1.4. Full-Duplex Flow Control

If hardware pins TP_PAUSE are enabled at power-on reset, Register 5.10=1 and Register 4.10=1.

Therefore, after reset is completed:

- When Auto-Negotiation is enabled: Register 4.10 may be overwritten by the MAC, and Register 5.10 may be updated after NWay has completed. Register 5.10 is set as read-only for the MAC.
- When Auto-Negotiation is disabled: Register 5.10 is set to R/W for the MAC through the SMI interface. If the SMI does not write to Register 5.10, the Register remains 5.10=1, which means hardware forced flow control is enabled.

7.2. Initialization and Setup

7.2.1. Reset

The RTL8208C-GR is initialized while in the reset state. During reset, each transceiver is reset simultaneously. There are three ways to reset the RTL8208C-GR:

- Power-on auto reset
- Hardware pin reset
- Software reset

The internal power-on auto-reset circuit can reset the chip while the reset pin is floating. The hardware reset signal must be asserted low for at least 10ms on the RESET# pin. A software reset is implemented by writing Register 0.15=1, which is self-clearing.

7.2.2. Setup and Configuration

The operational modes of the RTL8208C-GR can be configured either by hardware pin (pulled high or low) upon reset, or by software programming via accessing the RTL8208C-GR registers through the SMI (see section 5 Pin Descriptions, page 5 for details).

7.3. 10Base-T

7.3.1. Transmit Function

When TX_EN is active, TXD from RMII/SMII/SS-SMII is serialized, Manchester-encoded, and driven onto the network medium as a packet stream. An on-chip filtering and wave shaping circuit eliminates the need for external filtering. The transmit function is disabled when the link has failed or when the auto-negotiation process is in progress.

7.3.2. Receive Function

The Manchester decoder converts the incoming serial stream when the circuit detects the signal, and the digital serial stream is then converted to 2-bit (RMII) or 1-bit (SMII/SS-SMII) data format. The preamble of the incoming stream is stripped off and regenerated. Start Frame Delimiter (SFD) is generated into RXD once the incoming SFD is detected and data bits entering the elastic buffer are over threshold.

7.3.3. Link Monitor

The 10Base-T link pulse detection circuit continually monitors the RXIP/RXIN pins for the presence of valid link pulses. Auto-polarity is implemented to correct the detected reverse polarity of RXIP/RXIN signal pairs.

The 10Base-T link pulse detection circuit constantly monitors the RXIP/RXIN pins for the presence of valid link pulses. Auto-polarity is implemented for correcting the detected reverse polarity of the RXIP/RXIN signal pairs.

7.3.4. Jabber

Jabber occurs when TX_EN is asserted for longer than 21ms. Both transmit and loopback functions are disabled once jabber has occurred. The MII Register 1.1 (Jabber detect) bit is set high until jabber disappears and the bit is read again. The Jabber function is supported in 10-Base-T only, and is not implemented in 100Base-TX. The collision LED of the corresponding port will blink while Jabber occurs. Jabber is dismissed after TX_EN remains low for at least 500ms.

7.3.5. Loopback

Loopback mode can be achieved by writing to Register 0.14=1. Loopback mode routes transmitted data at the output of NRZ to the NRZI conversion module, back to the receiving path. This mode is used to check the device's connections at the 5-bit symbol bus, and verify the operation of the Phase-Locked Loop (PLL).

7.4. 100Base-TX

An internal 125MHz clock is generated by an on-chip PLL circuit to synchronize the transmit data or generate the clock signal for the incoming data stream.

7.4.1. Transmit Function

Upon detection of TX_EN high, the RTL8208C-GR converts RMII/SMII/SS-SMII TXD to a 5-bit codegroup and substitutes J/K code-groups for the first two code-groups (Start of Stream Delimiters (SSD)). As long as TX_EN is asserted high, 4B5B coding continues for all data. At the end of TX_EN, T/R codegroups are appended to the last data field. These are stripped off at the remote receiving end.

During the inter-packet gap, where TX_EN deasserted, IDLE code-groups are transmitted for clocking purposes of the remote receiver. The 5-bit serial data stream is 4B/5B coded and then scrambled, as defined by the TP-PMD Stream Cipher function, to flatten the power spectrum energy such that EMI effects are significantly reduced.

The scrambled seed is unique for each port based on PHY addresses. After scrambling, the bit stream is driven onto the network media in the form of MLT-3 signaling. This multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also benefits EMI emission.

7.4.2. Receive Function

The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits. These circuits compensate for incoming distortion of the MLT-3 signal. An MLT-3 to NRZI, and NRZI to NRZ converter is used to convert analog signals to digital bit-streams. A PLL circuit is also included to clock data bits with minimum bit error rate. De-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits follow. CRS_DV is asserted no later than within a few bits time of when the SSD (Start-of-Stream-Delimiter) is detected (delay due to the elastic buffer as mentioned in the RMII section, page 30), and ends toggling once the data in the elastic buffer has been dumped to RXD.

	Table 22. 4B/5B Coding					
Name	4B Code	5B Code	Definition			
0	0000	11110	Data 0			
1	0001	01001	Data 1			
2	0010	10100	Data 2			
3	0011	10101	Data 3			
4	0100	01010	Data 4			
5	0101	01011	Data 5			
6	0110	01110	Data 6			
7	0111	01111	Data 7			
8	1000	10010	Data 8			
9	1001	10011	Data 9			
Α	1010	10110	Data A			
В	1011	10111	Data B			

Single-Chip Octal 10/100Base-TX PHY Transceiver

Name	4B Code	5B Code	Definition	
С	1100	11010	Data C	
D	1101	11011	Data D	
Е	1110	11100	Data E	
F	1111	11101	Data F	
Ι	0000*	11111	Idle	
J	0101*	11000	Start of Stream Delimiter, Part 1	
K	0101*	10001	Start of Stream Delimiter, Part 2	
Т	0000*	01101	End of Stream Delimiter, Part 1	
R	0000*	00111	End of Stream Delimiter, Part 2	
Н	1000	00100	Transmit Error (Used to Force Signaling Errors)	
V	0111	00000	Invalid Code	
V	0111	00001	Invalid Code	
V	0111	00010	Invalid Code	
V	0111	00011	Invalid Code	
V	0111	00101	Invalid Code	
V	0111	00110	Invalid Code	
V	0111	01000	Invalid Code	
V	0111	01100	Invalid Code	
V	0111	10000	Invalid Code	
V	0111	11001	Invalid Code	

*Treated as an invalid code (mapped to 0111) when received in data field.

7.4.3. Link Monitor

In 100Base-TX mode, receive signal energy is detected by monitoring the receive pair for transitions in the signal level. Signal levels are qualified using squelch detect circuits. When no signal or valid signals are detected on the receive pair, the link monitor will enter and remain in the 'Link Fail' state where only idle codes will be transmitted. When a valid signal is detected on the receive pair, the link monitor will enter the 'Link Pass' state and the transmit and receive functions will be enabled.

7.5. Baseline Wander Compensation

The RTL8208C-GR is ANSI TP-PMD compliant and supports input and Base Line Wander (BLW) compensation in 100Base-TX mode. The RTL8208C-GR does not require external attenuation circuitry at its receive inputs, RXIP/RXIN. It accepts TP-PMD compliant waveforms directly, requiring only a 100 Ω termination and a 1:1 transformer.

BLW is the change in the average DC content, over time, of an AC coupled digital transmission over a given transmission medium. BLW is a result of the interaction between the low frequency components of a transmitted bit stream and the frequency response of the AC coupling component(s) within the transmission system. If the low frequency content of the digital bit stream goes below the low frequency pole of the AC coupling transformers, then the droop characteristics of the transformers will dominate, resulting in potentially serious BLW. If BLW is not compensated for, packet loss will occur.

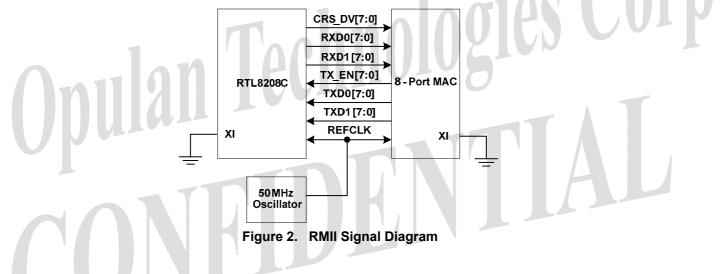
7.6. RMII/SMII/SS-SMII

The interface to the MAC can be RMII, SMII, or SS-SMII through MODE[1:0]. When floating MODE[1:0] upon power-on reset, the RTL8208C-GR operates in RMII mode (default).

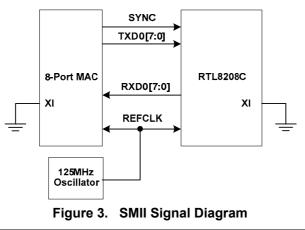
Table 23. RMII/SMII/SS-SMII Modes					
MODE[1:0]	Operation Mode	REFCLK Clock Input			
2'b1x	RMII	50MHz ±50ppm			
2'b00	SMII	125MHz ±100ppm			
2'b01	SS-SMII	125MHz ±100ppm			

Table 24 shows the signals required for each interface:

Table 24. RMII/SMII/SS-SMII Signals		
RMII	SMII	SS-SMII
REFCLK	REFCLK	REFCLK
-	SYNC	TX_SYNC
CRS_DV[2:0]	-	-
CRS_DV[3]	-	RX_SYNC
CRS_DV[4]	-	RX_CLK
CRS_DV[7:5]	-	-
RXD0[7:0]	RXD0[7:0]	RXD0[7:0]
RXD1[7:0]	-	-
TX_EN[3:0]	-	-
TX_EN[4]	-	TX_CLK
TX_EN[7:5]	-	-
TXD0[7:0]	TXD0[7:0]	TXD0[7:0]
TXD1[7:0]	-	-


Single-Chip Octal 10/100Base-TX PHY Transceiver

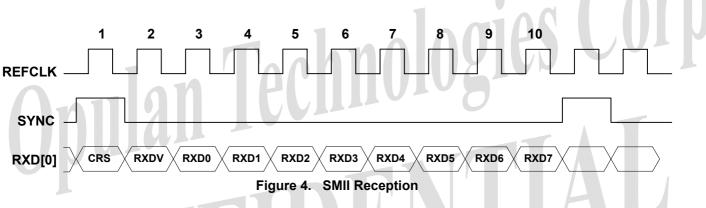
Track ID: JATR-1076-21 Rev. 1.0


7.6.1. RMII (Reduced MII)

The RTL8208C-GR meets all of the RMII requirements outlined in the RMII Consortium specifications. The main advantage introduced by RMII is pin count reduction; e.g., it operates with only one 50MHz reference clock for both the TX and RX sides, without separate clocks needed for both paths, as with the MII interface. However, some hardware modification is needed for this change, the most important of which is the presence of an elastic buffer for absorption of the frequency difference between the 50MHz reference clock and the clocking information of the incoming data stream. Another change implemented is that the MII RXDV and Carrier_Sense are merged into one signal, CRS_DV, which is asserted high while detecting incoming packet data. When internal Carrier_Sense is de-asserted, CRS_DV is de-asserted when the first di-bit of a nibble is presented onto RXD[1:0] synchronously to REFCLK. If there is still data in the FIFO that has not yet been presented onto RXD[1:0], then, on the second di-bit of a nibble, CRS_DV reasserts. This pattern of assertion and de-assertion continues until all received data in the FIFO has been presented onto RXD[1:0]

7.6.2. SMII (Serial MII)

The RTL8208C-GR also supports SMII interface to MAC, which allows a further reduction in the number of signals. As illustrated below, both the MAC and RTL8208C-GR are synchronous to a 125MHz reference clock.


Single-Chip Octal 10/100Base-TX PHY Transceiver

Receive Path

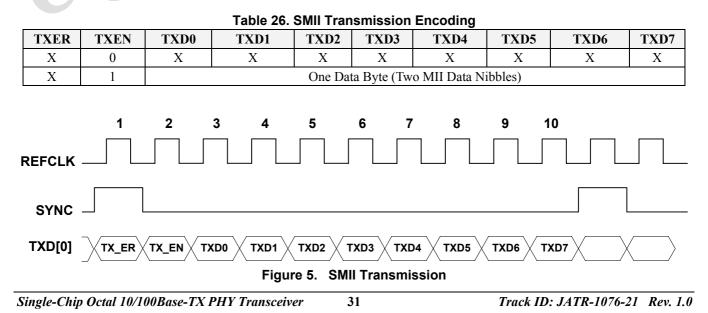
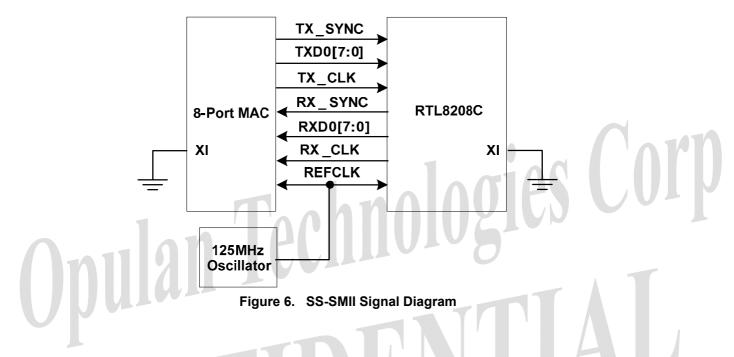
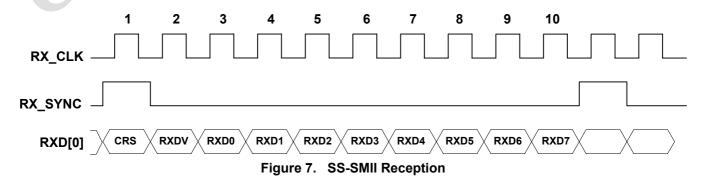

Receive data and control information are signaled in 10-bit segments. The SYNC signal is used to delimit the 10-bit segments. The MAC is responsible for generating SYNC pulses every ten clocks. In 100Mbps mode, each segment represents a byte of data. In 10Mbps mode, each segment is repeated ten times to represent a byte of data. The receive sequence contains all of the information defined on the standard MII receive path.

Table 25. SMII Reception Encoding										
CRS RX_DV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7										
Х	0	RXER from Previous Frame	Speed 0: 10Mbps 1: 100Mbps	Duplex 0: Half 1: Full	Link 0: Down 1: Up	Jabber 0: OK 1: Detected	Upper Nibble 0: Invalid 1: Valid	False Carrier 0: OK 1: Detected	1	
Х	1		One Data Byte (Two MII Data Nibbles)							

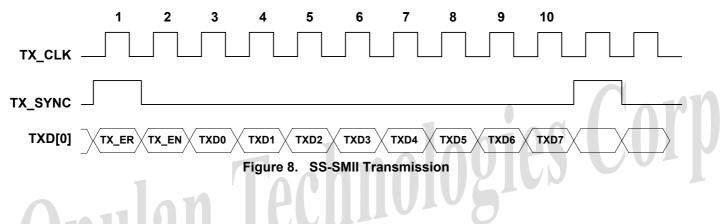
Transmit Path


Transmit data and control information are signaled in 10-bit segments. The SYNC signal is used to delimit the 10-bit segments. The MAC is responsible for generating these SYNC pulses every ten clocks. For 100Mbps mode, each segment represents a byte of data. However, for 10Mbps mode, each segment is repeated ten times to represent a byte of data.


7.6.3. SS-SMII (Source Synchronous-Serial MII)

Source-Synchronous SMII is designed for applications requiring a trace delay of more than 1ns. Three signals are added to the SMII interface: RX_SYNC, RX_CLK, TX_CLK; and the SYNC of SMII is modified to TX_SYNC in SS-SMII.

Receive Path


Receive data and control information are signaled in 10-bit segments. The RX_SYNC signal is used to delimit the 10-bit segments. The RTL8208C-GR is responsible for generating these RX_SYNC pulses every ten clocks. In 100Mbps mode, each segment represents a byte of data. In 10Mbps mode, each segment is repeated ten times to represent a byte of data. The receive sequence contains all the information defined on the standard MII receive path.

Transmit Path

Transmit data and control information are signaled in 10-bit segments. The TX_SYNC signal is used to delimit the 10-bit segments. The MAC is responsible for generating these TX_SYNC pulses every ten clocks. In 100Mbps mode, each segment represents a byte of data. In 10Mbps mode, each segment is repeated ten times to represent a byte of data. The receive sequence contains all the information defined on the standard MII receive path. The PHY can sample one of the ten segments.

7.7. Power Saving and Power Down Mode

7.7.1. **Power Saving Mode**

The RTL8208C-GR implements power saving mode on a per-port basis. A port automatically enters power saving mode ten seconds after the cable is disconnected from it. Once a port enters power saving mode, it transmits normal link pulses only on its TXOP/TXON pins and continues to monitor the RXIP/RXIN pins to detect incoming signals, which might be the 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or Auto-Negotiation's FLP (Fast Link Pulse). After it detects an incoming signal, it wakes up from power saving mode and operates in normal mode according to the result of the connection.

7.7.2. Reg0.11 Power Down Mode

The RTL8208C-GR implements power- down mode on a per-port basis. Setting MII Reg0.11 forces the corresponding port of the RTL8208C-GR to enter power down mode. This disables all transmit/receive functions on that port.

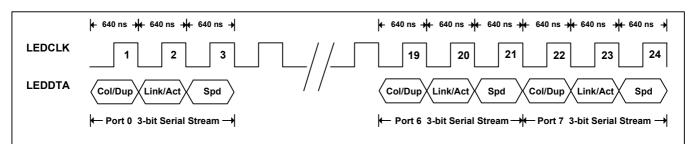
7.8. LED Configuration

7.8.1. **Serial LEDs**

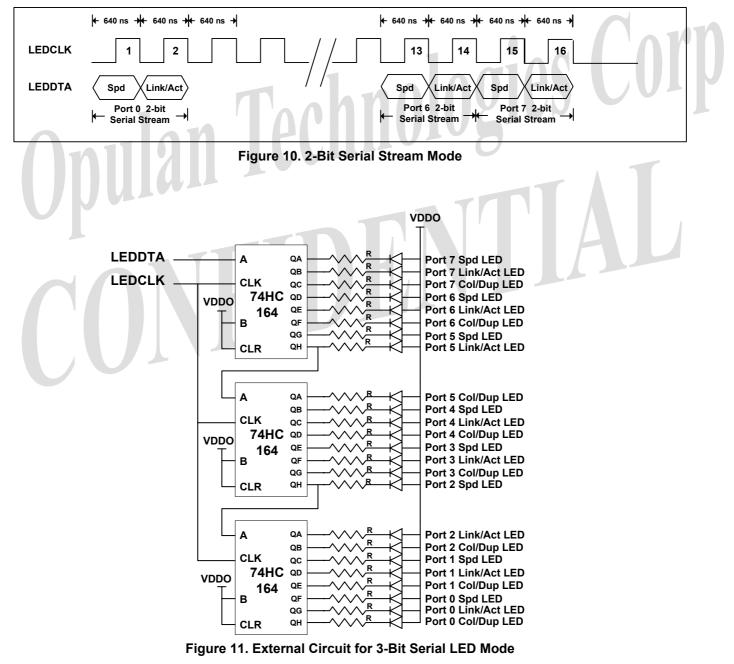
The RTL8208C-GR supports serial LED status streams for LED display. The forms of LED status streams, shown below, are controlled by LEDMODE[1:0] pins, which are latched upon reset. All LED statuses are represented as active-low, except Link/Act in Bi-color LED mode, whose polarity depends on Spd status.

	Table 27. Serial Li	ED Mode	
LEDMODE[1:0]	Mode	Output Sequences	
00	3-Bit Serial Stream	Col/Fulldup, Link/Act, Spd	
01	2-Bit Serial Stream	Spd, Link/Act	
10	3-Bit for Bi-Color LED	Col/Fulldup, Link/Act, Spd	
11	1-Bit Serial Stream	Link/Act/Spd	
	Table 28. Serial LE	D Status	

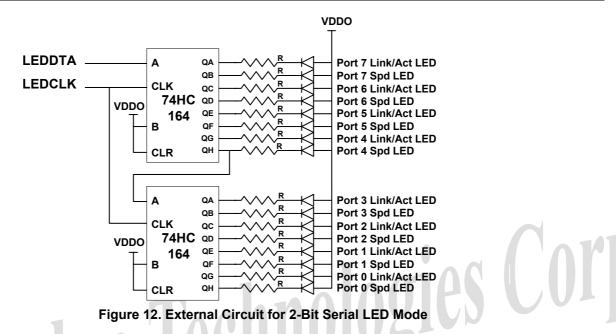
Table 28. Serial LED Status						
LED Status	Description					
Col/Fulldup	Collision/Full Duplex Indicator.					
Upul	Blinks every 43ms when collisions are occurring. Low for full duplex, and high for half duplex mode.					
Link/Act	Link/Activity Indicator.					
01	In 3-bit serial stream mode, low for link established. In 3-bit Bi-color LED mode, Link/Act is high for link established when speed is low (100Mbps); Link/Act is low for link established when speed is high (10Mbps). Link/Act Blinks every 43ms when the corresponding port is transmitting or receiving.					
Spd	Speed Indicator.					
	Low for 100Mbps, high for 10Mbps.					
Link/Act/Spd	Link/Activity/Speed Indicator. Low for Link Established. Blinking every 43ms for 100Mbps activity. Blinking every 120ms for 10Mbps activity.					


LED Blinking Time

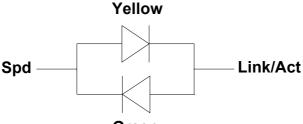
LED blinking time can be set to 120ms by setting LED BLNK TIME=0. The LED statuses supporting 43/120ms blink times are Col/Fulldup, Link/Act. For status Link/Act/Spd, LED blinking time is not affected by LED BLNK TIME.


Serial Stream Order

Every bit stream is output port by port, from port0 to port7 with Col/Fulldup as the first bit in a port stream. In 2-bit serial stream mode, the sequence is Spd, then Link/Act. The following diagrams illustrate the sequences in 3-bit and 2-bit serial stream mode.



Single-Chip Octal 10/100Base-TX PHY Transceiver



Bi-Color LED

For 3-bit Bi-color LED mode, Link/Act and Spd are used for one Bi-color LED package, which is a single LED package with two LEDs connected in parallel and with opposite polarities.

Table 29. Bi-Color LED								
Spd	Link/Act	Indication	Bi-Color State					
0	0	No Link	Off					
0	1	100Mbps Link Up	Green					
1	0	10Mbps Link Up	Yellow					
			·					

Green Figure 13. 3-Bit Bi-Color LED

36

7.8.2. **Scan LED**

The RTL8208C-GR supports Scan LED display mode. The forms of LED status streams, as shown below, are controlled by LEDMODE[1:0] pins, which are latched upon reset.

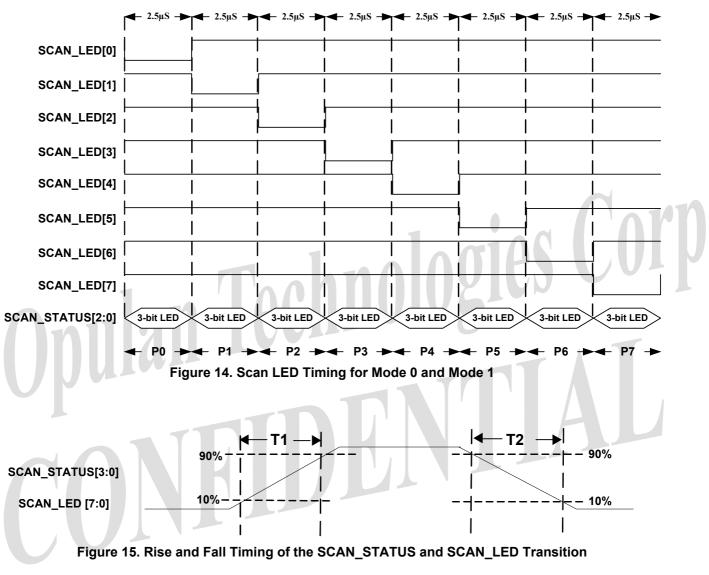
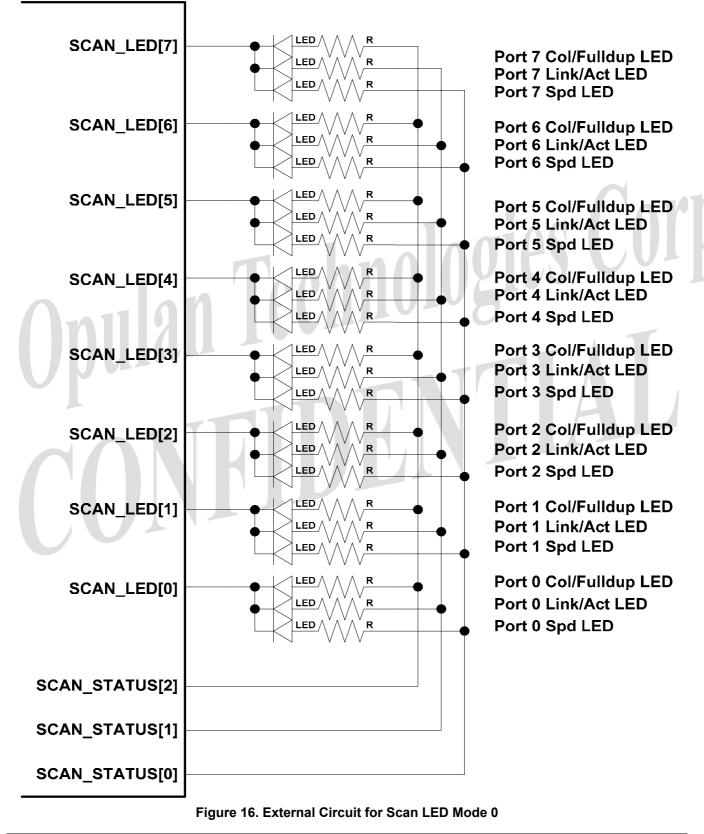
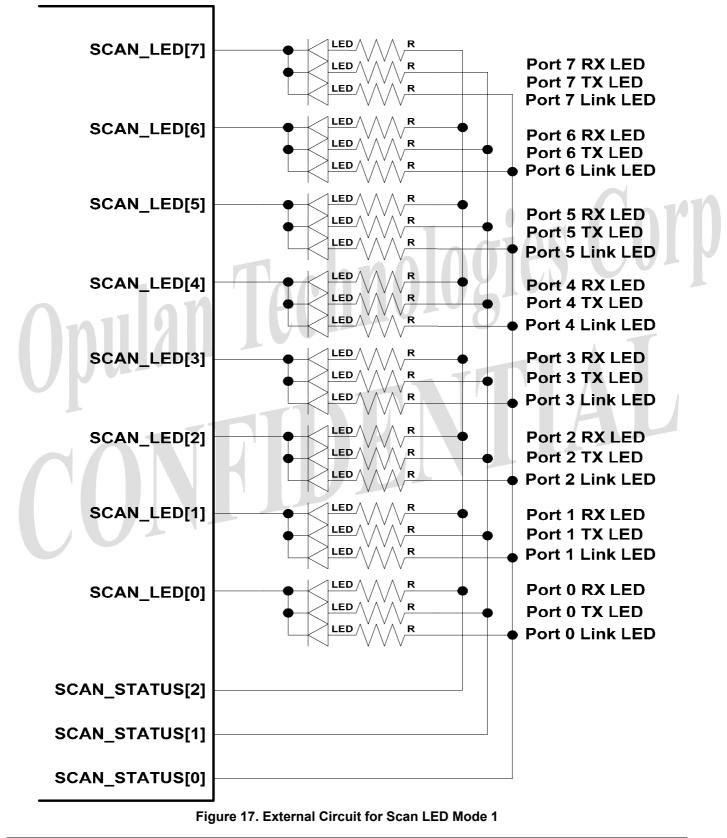

Table 30. Scall LED							
LEDMODE[1:0]	Mode	SCAN_STATUS[2:0]					
00	Mode 0	Col/Fulldup, Link/Act, Spd					
01	Mode 1	Rx, Tx, Link					
10	Mode 2 for Bi-Color LED	NC, Bi-color Link/Act/Spd, NC					
11	Reserved	-					

	Table 31. Scan LED Status
LED Status	Description
Link/Act	Link/Activity Indicator.
	High for link established.
	Blinks when the corresponding port is transmitting or receiving.
Link	Link Indicator.
	High for link established.
Spd	Speed Indicator.
	High for 100Mbps and low for 10Mbps.
Col/Fulldup	Collision/Full Duplex Indicator.
	High for full duplex, low for half duplex.
	Blinks when collisions occur on the corresponding port.
Bi-Color Link/Act/Spd	Bi-Color LED Link, Activity, and Speed Indicator.
	Its polarity depends on the Speed status.
	Blinks when the corresponding port is transmitting or receiving.
RX	High for Receive Activity.
TX	High for Transmit Activity.

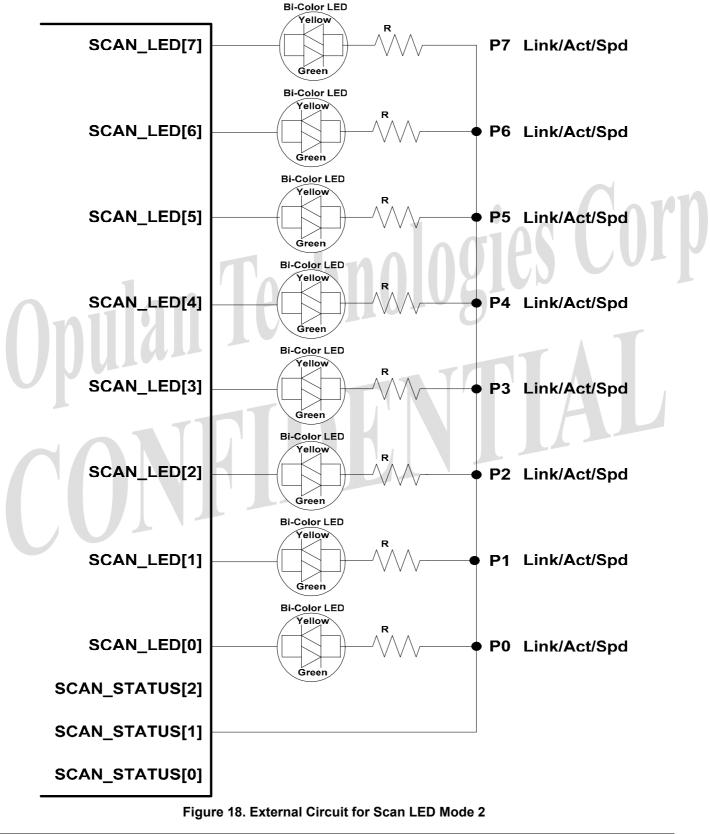
Table 30 Scan LED


Scan LED Timing for Mode 0 and Mode 1

- T1: Rise time of all SCAN signals, typically 40ns.
- T2: Fall time of all SCAN signals, typically 40ns.



External Circuit for Scan LED Mode 0



External Circuit for Scan LED Mode 1

External Circuit for Scan LED Mode 2

7.9. Crossover Detection and Auto Correction

During the link setup phase, the RTL8208C-GR checks whether it receives active signals on each port in order to determine if a connection can be established. In cases where the RTL8208C-GR receiver data pin pair is connected to the receiver data pin pair of the peer device, or vice versa, the RTL8208C-GR will automatically change its configuration to swap receiver data pins with transmitter data pins. If a port is connected to a PC or NIC with MDI-X interface with a crossover cable, the RTL8208C-GR will reconfigure the port to ensure proper connection. This effectively replaces the DIP switch commonly used for reconfiguring a port on a hub or switch.

By pulling-up EN_AUTOXOVER, the RTL8208C-GR identifies the type of connected cable and sets the port to MDI or MDIX. When switching to MDI mode, the RTL8208C-GR uses TXOP/N as transmit pairs; when switching to MDIX mode, the RTL8208C-GR uses RXIP/N as transmit pairs, and vice versa for receive pairs. This function is port-based.

Pulling-down EN_AUTOXOVER disables this function and the RTL8208C-GR operates in MDI mode, in which TXOP/N represents transmit pairs, and RXIP/N represents receive pairs.

Note: IEEE 802.3 compliant forced mode 100M ports with Autoxover have link problems with NWay (Auto-Negotiation) ports. It is recommended to NOT use Autoxover for forced 100M.

7.10. Polarity Detection and Auto Correction

For better noise immunity and lower interference to ambient devices, the Ethernet electrical signal on a twisted pair cable is transmitted in differential form. That is, the signal is transmitted on two wires in each direction with inverse polarities (+/-). If wiring on the connector is faulty, or a faulty transformer is used, the two inputs to a transceiver may carry signals with opposite but incorrect polarities. As a direct consequence, the transceiver will not work properly.

When the RTL8208C-GR operates in 10Base-T mode, it automatically reverses the polarity of its two receiver input pins if it detects that the polarities of the incoming signals on the pins is incorrect. However, this feature is unnecessary when the RTL8208C-GR is operating in 100Base-TX mode.

7.11. 1.8V Power Generation

The RTL8208C-GR uses a PNP power transistor to generate 1.8V from the 3.3V or 2.5V power supply. This 1.8V provides for digital core and analog circuits. The 1.8V power generation circuit also uses an external diode (1N4001) to reduce the voltage drop between the Emitter and Collector of the power transistor when 3.3V is supplied. However, when 2.5V is supplied, the diode should be removed and replaced by a short or 0 ohm resistor. If your system uses more than one RTL8208C-GR chip (more than 8 ports), do not use one PNP transistor for all of the RTL8208C-GR chips, even if the rating is enough. Instead, when 3.3V is supplied, use one transistor for each RTL8208C-GR.

Do not connect any beads directly between the collector of the PNP transistor and VDDA. This will affect the stability of the 1.8V power significantly when 3.3V is supplied.

10µF of 1.8V and 47µF of 2.5V/3.3V MUST use electrolytic capacitors (do not use ceramic capacitors).

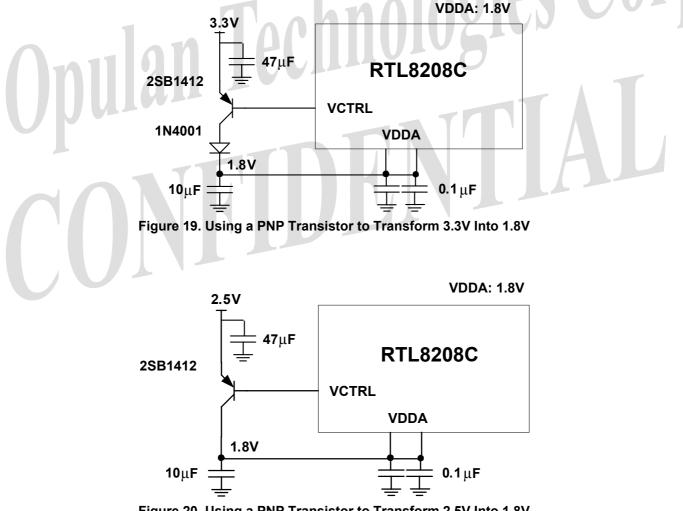


Figure 20. Using a PNP Transistor to Transform 2.5V Into 1.8V

43

Table 52: All Example Osing I ower Transistor 2001412							
Symbol	Limits	Unit					
V _{CBO}	-30	V					
V _{CEO}	-20	V					
V _{EBO}	-6	V					
I _C	-5	A (DC)					
P _C	10	W					
Tj	150	°C					
Tstg	-55~+150	°C					
	$\begin{tabular}{ c c c c }\hline \hline Symbol \\ \hline V_{CBO} \\ \hline V_{CEO} \\ \hline V_{EBO} \\ \hline I_C \\ \hline P_C \\ \hline Tj \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Symbol & Limits \\ \hline V_{CBO} & -30 \\ \hline V_{CEO} & -20 \\ \hline V_{EBO} & -6 \\ \hline I_C & -5 \\ \hline P_C & 10 \\ \hline Tj & 150 \\ \hline \end{tabular}$					

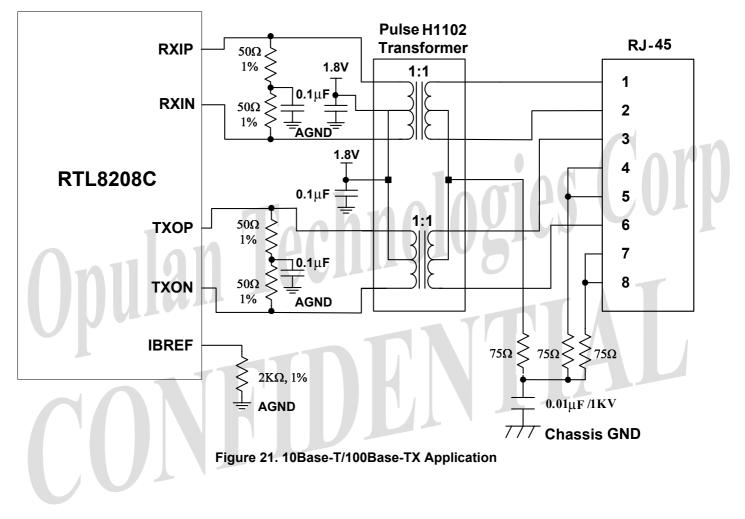
Table 32. An Example Using Power Transistor 2SB1412

Note: Absolute maximum ratings (Ta=25°C).

For more information, refer to http://www.rohm.com

7.12. Cable Tester

The cable tester determines the quality of the cables, connectors, and terminations. Some of the possible problems that can be diagnosed include open/short faults. The fault location can also be identified.


The RTL8208C-GR's cable tester transmits a signal of known amplitude to one pair of an attached cable. The transmitted signal will continue down the cable until it reflects off a cable imperfection. The magnitude of the reflection and the time it takes for the reflection to come back are shown in registers. Using the information in the registers, the distance to the problem location and the type of problem can be determined.

8. Application Information

8.1. 10Base-T/100Base-TX Application

Characteristics 9.

Absolute Maximum Ratings 9.1.

WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified.

Parameter	Min	Ma	ax	Units
Storage Temperature	-10	+12	25	°C
VDDA, VDD Supply Referenced to GND	GND-0.3	+1.	98	V
VDDAH, VDDO Supply Referenced to GND	GND-0.3	+3.	63	V
Digital Input Voltage	GND	VDD	+0.3	V
D.2. Operating Range	34. Operating I			
Tuble		lange		A

Table 33. Absolute Maximum Ratings

Table	e 34. Operating	Range		
Parameter	Min	Typical	Max	Units
Ambient Operating Temperature (Ta)	0	7	+70	°C
3.3V Supply Voltage Range (VDDAH, VDDO)	3.13	3.3	3.46	V
2.5 Supply Voltage Range (VDDAH, VDDO)	2.37	2.5	2.62	V
1.8V Supply Voltage Range (VDDA, VDD)	1.74	1.8	1.93	V
CONFL	U			

9.3. DC Characteristics

Table 35. DC Characteristics									
Parameter	Symbol	Conditions	Min	Typical	Max	Units			
Power Supply Current	Icc	10Base-T, idle	-	-	68	mA			
for 1.8V		10Base-T, peak continuous 100% utilization			915				
		100Base-TX, idle			720				
		100Base-TX, Peak continuous 100%			720				
		utilization Power saving			66				
		Power down			65				
Power Supply Current	Icc	10Base-T, idle	-	-	50	mA			
for 3.3V		10Base-T, peak continuous 100% utilization			50				
		100Base-TX, idle			50				
		100Base-TX, peak continuous 100%		h n	50				
		utilization			45				
		Power saving Power down			45 35				
D C 1 C 1	т								
Power Supply Current for 2.5V	Icc	10Base-T, idle 10Base-T, peak continuous 100% utilization		-	30 25	mA			
101 2.3 V		10Base-TX, idle	D		25 25				
		100Base-TX, peak continuous 100%			25				
		utilization			25				
		Power saving			21				
		Power down			11				
Total Power Consumption	PS	10Base-T, idle	-	-	287.4	mW			
for All 8 Ports with 3.3V		10Base-T, peak continuous 100% utilization			1812				
and 1.8V		100Base-TX, idle			1461				
		100Base-TX, peak continuous 100%			1461				
		utilization			0(7.0				
		Power saving			267.3 232.5				
	DC	Power down				117			
Total Power Consumption for All 8 Ports with 2.5V	PS	10Base-T, idle 10Base-T, peak continuous 100% utilization	-	-	197.4 1709.5	mW			
and 1.8V		10Base-TX, idle			1358.5				
		100Base-TX, peak continuous 100%			1358.5				
		utilization			1550.5				
		Power saving			171.3				
		Power down			144.5				
TTL Input High Voltage	V_{ih}	-	2	-	-	V			
TTL Input Low Voltage	V_{il}	-	-	-	0.8	V			
TTL Input Current	I _{in}	-	-10	-	10	μΑ			
TTL Input Capacitance	C _{in}	-	-	3	-	pF			
Output High Voltage	V _{oh}	-	2.6	-	_	V			
Output Low Voltage	V _{ol}	-	-	-	0.4	V			
Output Tristate Leakage	IOZ	-	-	-	10	μΑ			
Current									

Parameter	Symbol	Conditions	Min	Typical	Max	Units
	Tra	ansmitter, 100Base-TX (1:1 Transformer Rat	io)			1
TX+/- Output Current High	I _{OH}	-	-	-	40	mA
TX+/- Output Current Low	I _{OL}	-	0	-	-	μΑ
	Т	ransmitter, 10Base-T (1:1 Transformer Ratio))			
TX+/- Output Current High	I _{OH}	-	-	-	100	mA
TX+/- Output Current Low	I _{OL}	-	0	-	-	μΑ
		Receiver, 100Base-TX				
RX+/- Common-mode Input Voltage	-	-	-	1.8		V
RX+/- Differential Input Resistance	-			2.5	-	kΩ
		Receiver, 10Base-T				
Differential Input Resistance	-		<u>K-1</u>	2.5	-	kΩ
Input Squelch Threshold	-	-	D -	340	-	mV
.4. AC Chai	acter	istics		T		
9.4. AC Chai	racter	<i>istics</i> Table 36. AC Characteristics				

Table 36. AC Characteristics								
Parameter	SYM	Conditions	Min	Typical	Max	Units		
		Transmitter, 100Base-TX						
Differential Output Voltage, Peak-to-Peak	V _{OD}	50Ω from each output to Vcc, Best-fit over 14 bit times	-	2.022	-	V		
Differential Output Voltage Symmetry	V _{os}	50 Ω from each output to Vcc, $ Vp+ / Vp- $	-	100.3	-	%		
Differential Output Overshoot	V ₀₀	Percent of Vp+ or Vp-	-	2.7	-	%		
Rise/Fall Time	tr, tf	10~90% of Vp+ or Vp-	-	4.2/4.3	-	ns		
Rise/Fall Time Imbalance	tr - tf	-	-	100	-	ps		
Duty Cycle Distortion	-	Deviation from best-fit time-grid, 010101 Sequence	-	133	-	Ps		
Timing Jitter	-	Idle pattern	-	650	-	ps		
		Transmitter, 10Base-TX						
Differential Output Voltage, Peak-to-Peak	V _{OD}	50Ω from each output to Vcc, all pattern	-	4.56	-	V		
TP_IDL Silence Duration	-	Period of time from start of TP_IDL to link pulses or period of time between link pulses	10.5	-	15.8	Ms		
Transmitter Output Jitter	-	-	-	6	-	ns		
Harmonic Content	-	dB below fundamental, 20 cycles of all ones data	-	31.6	-	dB		

First Bit of 'T' on MDI

Input to CRS DV De-

RX Propagation Delay

TX Propagation Delay

TX EN to MDI Output

Carrier Sense Turn-Off

RX Propagation Delay

From RXIP/N to

LED On Time

LED Off Time

Jabber Active

MDC

of MDC

Jabber De-Assert

MDIO Setup Time

MDIO Hold Time

MDIO Output Delay

Relative to Rising Edge

CRS DV

Delay

Assert

Units

Bits

ms

ms

ms

ms

MHz

ns

ns

ns

Max

12

16

12

8

18

17

6

6

9

12

120

120

80

80

2.5

-

10

16

15

5

5

12

8

-

_

_

70

_

_

-

_

_

4

_

_

-

-

9

43

43

60

60

_

10

10

_

Digital Timing Characteristics 9.5.

_

t_{RXpd}

t_{TXpd}

_

 t_{CSON}

t_{CSOFF}

t_{RXpd}

t_{LEDon}

t_{LEDoff}

_

_

_

-

_

_

		Table 37. Digital Timing Characteristics			
Parameter	SYM	Conditions	Min	Typical	
		100Base-TX Transmit System Timing			
Active TX_EN Sampled to First Bit of 'J' on MDI Output	-	-	-	11	
Inactive TX_EN Sampled to First Bit of 'T' on MDI Output	-	-	-	15	
TX Propagation Delay	t _{TXpd}	From TXD[1:0] to TXOP/N	-	11	
		100Base-TX Receive System Timing			
First Bit of 'J' on MDI Input to CRS_DV Assert	-	From RXIP/N to CRS_DV	-	6	

10Base-TX Transmit System Timing

10Base-TX Receive System Timing

Preamble on RXIP/N to CRS DV Asserted

LED Timing

Jabber Timing (10Base-T Only)

SMI Timing

From TX EN=1 to Jabber Asserted

From TX_EN=0 to Jabber De-Asserted

From RXIP/N to CRS DV

From RXIP/N to RXD[1:0]

From TXD[1:0] to TXOP/N

From TX EN Assert to TXOP/N

TP IDL to CRS DV De-Asserted

From RXIP/N to RXD[1:0]

While LED Blinking

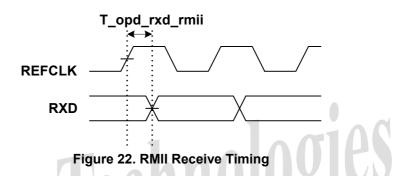
While LED Blinking

MDC Clock Rate

Write Cycle

Write Cycle

Read Cycle


49

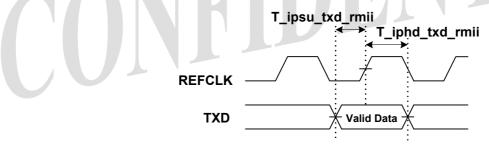
9.5.1. RMII Receive Timing

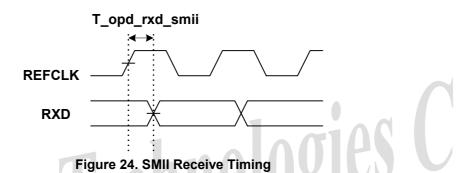
Table 38. RMII Receive Timing

Symbol	Description	Minimum	Typical	Maximum	Units
T_opd_rxd_rmii	REFCLK Rising Edge to RXD/CRS_DV Delay.	4	-	9	ns

9.5.2. RMII Transmit Timing

	Table 39. RMII Transmit Timing									
Symbol	Description	Minimum	Typical	Maximum	Units					
T_ipsu_txd_rmii	TXD/TX_EN Setup Time to REFCLK.	2	-	-/ \	ns					
T_iphd_txd_rmii	TXD/TX_EN Hold Time from REFCLK.	2	-		ns					




Figure 23. RMII Transmit Timing

9.5.3. SMII Receive Timing

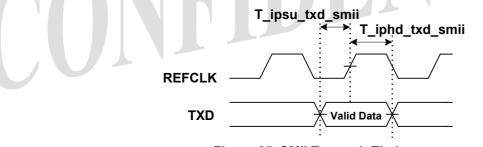
Table 40. SMII Receive Timing

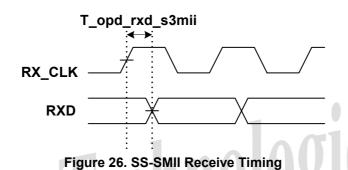
Symbol	Description	Minimum	Typical	Maximum	Units
T_opd_rxd_smii	REFCLK Rising Edge to RXD Delay.	3.5	4	4.5	ns

9.5.4. SMII Transmit Timing

Table 41. SMII Transmit Timing

Symbol	Description	Minimum	Typical	Maximum	Units
T_ipsu_txd_smii	TXD/SYNC Setup Time to REFCLK.	1	-	-	ns
T_iphd_txd_smii	TXD/SYNC Hold Time from REFCLK.	1.5	-		ns




Figure 25. SMII Transmit Timing

9.5.5. SS-SMII Receive Timing

Table 42. SS-SMII Receive Timing

Symbol	Description	Minimum	Typical	Maximum	Units
T_opd_rxd_s3mii	RX_CLK Rising Edge to RXD/RX_SYNC Delay.	1.5	-	3	ns

9.5.6. SS-SMII Transmit Timing

Table 43. SS-SMII Transmit Timing

Symbol	Description	Minimum	Typical	Maximum	Units
T_ipsu_txd_s3mii	TXD/TX_SYNC Setup Time to TX_CLK.	1.5	-		ns
T_iphd_txd_s3mii	TXD/TX_SYNC Hold Time from TX_CLK.	1	-		ns

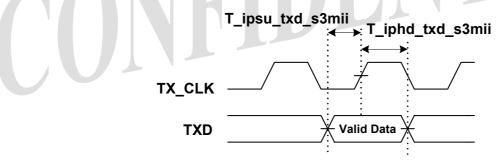


Figure 27. SS-SMII Transmit Timing

9.6. Power Start Up & Internal Reset Sequence

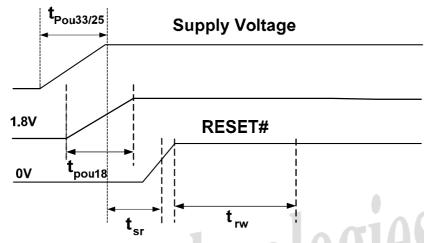


Figure 28. Power Start Up & Internal Reset Sequence

- $t_{pou33/25}$: min. 1ms and max. 5ms, 3.3V/2.5V power on to stable duration requirement.
- t_{pou18}: min. 600µs and max. 2ms, 1.8V power on to stable duration requirement.
- t_{sr}: min. 10ms after 1.8V Power Stable, stable supply voltage to reset high duration.
- t_{rw}: max. 50ms, Reset_wait (Start normal PHY after reset deassertion).

9.7. Thermal Characteristics

Heat generated by the chip causes a temperature rise of the package. If the temperature of the chip (Tj, junction temperature) is beyond the design limits, there will be negative effects on operation and the life of the IC package. Heat dissipation, either through a heat sink or electrical fan, is necessary to provide a reasonable environment (Ta, ambient temperature) in a closed case. As power density increases, thermal management becomes more critical. A method to estimate the possible Ta is outlined below.

Thermal parameters are defined according to JEDEC standard JESD 51-2, 51-6:

 θ ja (Thermal resistance from junction to ambient), represents resistance to heat flow from the chip to ambient air. This is an index of heat dissipation capability. A lower θ ja means better thermal performance.

 $\theta ja = (Tj - Ta) / Ph$

Where Tj is the junction temperature

Ta is the ambient temperature

Ph is the power dissipation

 θ jc (Thermal resistance from junction to case), represents resistance to heat flow from the chip to the package top case. θ jc is important when an external heat sink is attached on the package top.

 $\theta jc = (Tj - Tc) / Ph$, where Tj is the junction temperature

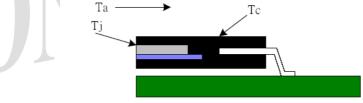
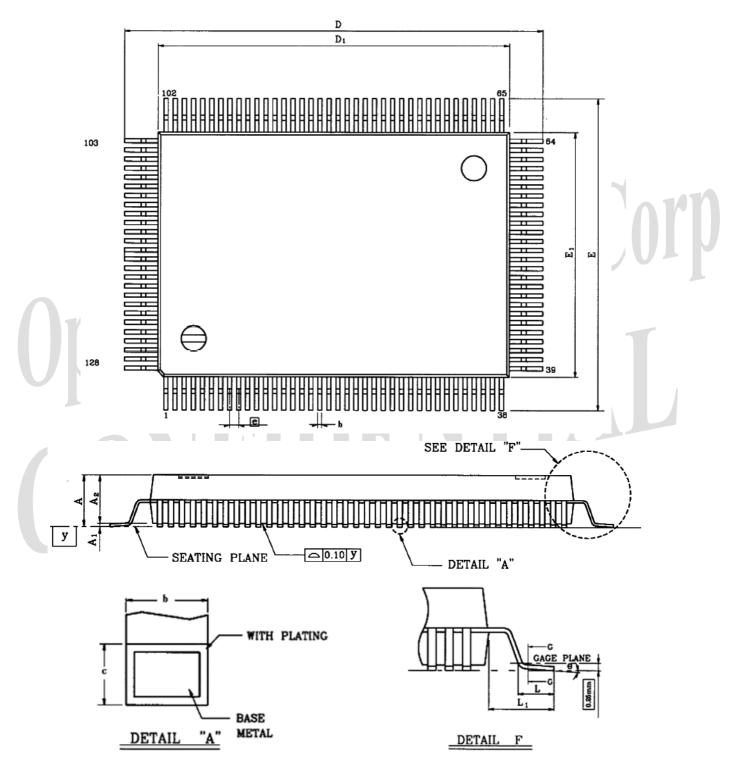


Figure 29. Cross-Section of 128-Pin QFP

9.7.1. Thermal Operating Range

Table 44. Thermal Operating Range


Parameter	SYM	Conditions	Min	Typical	Max	Units
Junction Operating Temperature	Tj	-	-	-	125	°C
Ambient Operating Temperature	Та	-	-	-	70	°C

9.7.2. Thermal Resistances

Parameter	SYM	Conditions	Min	Typical	Max	Units
Thermal Resistance: Junction to Ambient	θja	2 Layer PCB, 0 ft/s Airflow	-	28.2	- 1	°C/W
Thermal Resistance: Junction to Case	θјс	2 Layer PCB, 0 ft/s Airflow	-	2.0	-	°C/W
Note: PCB conditions (JEDEC JESD51-7)		chnolo DEN	g]			

10. Mechanical Dimensions

See the Mechanical Dimensions notes on the next page.

Single-Chip Octal 10/100Base-TX PHY Transceiver

10.1. Notes for Mechanical Dimensions

Symbol	Dime	nsions in i	nches	Dim	ensions in	mm		
	Min	Typical	Max	Min	Typical	Max		
Α	-	-	0.134	-	-	3.40		
A ₁	0.010	-	-	0.25	-	-		
A ₂	0.101	0.107	0.117	2.50	2.72	2.97		
b	0.004	0.008	0.012	0.10	0.20	0.30		
c	0.004	-	0.008	0.09	-	0.23		
D		0.913 BSC	2	23.2 BSC				
D ₁	0.787 BSC			20.00 BSC				
Е		0.677 BSC				17.20 BSC		
E ₁	0.551 BSC				14.00 BSC			
e	0.20 BSC			0.5 BSC				
L	0.026	0.035	0.041	0.65	0.88	1.03		
L ₁	0.063 BSC				1.60 BSC			
У	-		0.004	-	-	0.10		
θ	0°		12°	0°		12°		

Notes:

- 1. Dimensions $D_1 \& E_1$ do not include mold protrusion.
- 2. Controlling dimension: Millimeter (mm).
- 3. General appearance spec. Should be based on final visual inspection.

		TITLE:		
Quad Fla	at Packa	nge 128 Leads 1	4x20mm Outline	
		0		
APPROVE		DOC. NO.		
		VERSION		
\mathbf{N}		PAGE		
CHECK		DWG NO.	~	
IIV'		DATE		
REA	LTEK	SEMICONDUC	CTOR CORP.	

11. Ordering Information

Table 46. Ordering Information

Part Number	Package	Status
RTL8208C-GR	128-Pin QFP with 'Green' Package	Production

Realtek Semiconductor Corp. Headquarters No. 2, Innovation Road II

Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

Single-Chip Octal 10/100Base-TX PHY Transceiver

58