

PB-free package

General Description

SIT232 is a 5V-power-supply, dual-channel, low-power RS-232 transceiver that fully meets the requirements of the TIA/EIA-232 standard.

The SIT232 includes two drives and two receivers, all of which can be used independently. Receiver converts RS-232 signal to CMOS logic output level. EIA/TIA-232E defines a voltage greater than 3V as logic 0, SIT232 all receivers are reversed, so the TTL responding level of the receiver is consistent with the EIA/TIA-232E level.

Powered by 5V power supply, The charge pump requires only four 1uF external capacitance to work at a rate of at least 120Kbps error-free data transmission, both of which can be independently enabled and closed. Each driver and receiver can be used independently.

Fig 1 SIT232 PIN Configuration

Parameter	Symbol	Amount	Unit		
Power Supply	VCC	-0.3~+6	V		
Positive Charge Pump Output	V+	VCC-0.3~+14	V		
Negative Charge Pump Output	V-	+0.3~-14	V		
\mathbf{V} + + $ \mathbf{V}$ -		+13	V		
Transmitter Input Pins	T1IN、T2IN	-0.3~VCC+0.3	V		
Receiver Input Pins	R1IN、R2IN	±30	V		
Transmitter Output Pins	T1OUT、T2OUT	V++0.3~V0.3	V		
Receiver Output Pins	R1OUT、R2OUT	-0.3~VCC+0.3	V		
Operating Temperature Range		-40~85	°C		
Storage Temperature Range		-60~150	°C		
Soldering Temperature Range		300	°C		
Continuous Power	SOP16	696	mW		
Dissipation	SOPW16	762	mW		

Absolute Maximum Rating

The maximum limited parameter means that exceeding these values may cause unrecoverable damage to the device. Under these conditions, it is not conducive to the normal operation of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The reference point for all voltages is the ground.

PIN Definition

PIN Number	PIN Name	PIN Function
1	C1+	Positive lead of C1 capacitor
2	V+	Positive charge pump output for storage capacitor only
3	C1-	Negative lead of C1 capacitor
4	C2+	Positive lead of C2 capacitor
5	C2-	Negative lead of C2 capacitor
6	V-	Negative charge pump output for storage capacitor only
7	T2OUT	RS232 line data output (to remote RS232 system)

Sit		SIT232 5V Supply Dual-Channel RS232 Transceiver
8	R2IN	RS232 line data input (from remote RS232 system)
9	R2OUT	Logic data output (to UART)
10	T2IN	Logic data input (from UART)
11	T1IN	Logic data input (from UART)
12	R1OUT	Logic data output (to UART)
13	R1IN	RS232 line data input (from remote RS232 system)
14	T1OUT	RS232 line data output (to remote RS232 system
15	GND	Ground
16	VCC	Power supply

Supply Current						
Parameter	Symbol	Test Condition	MIN	ТҮР	MAX	Unit
Supply Current with no Load	I _{sup}			5	10	mA

(If there is no additional explanation, typical value is tested when VCC=+5V, Temp= 25° C, C1~C4=1uF)

Logic Input Electrical Characteristics

Parameter	Symbol	Test Condition	MIN	ТҮР	MAX	Unit
Logic Control Low Level	VT _{TIN_L}	T1IN T2IN			0.8	V
Logic Control High Level	VT_{TIN_H}	T1IN T2IN	2			V
Logic Control Hysteresis		T1IN T2IN		0.3		V
Input Logic Current	ITIN	T1IN、T2IN		±1	±10	uA

(If there is no additional explanation, typical value is tested when VCC=+5V, Temp=25°C, C1~C4=1uF)

Receiver Output Electrical Characteristics						
Parameter	Symbol	Test Condition	MIN	ТҮР	MAX	Unit
Receiver Output Logic-Low Voltage	V _{ROL}	IOUT=3.2mA,			0.4	V
Receiver Output Logic-High Voltage	V _{ROH}	IOUT=-1mA,	3.5			V

(If there is no additional explanation, typical value is tested when VCC=+5V, Temp= 25° C, C1~C4=1uF)

Receiver Input electrical Characteristics

Parameter	Symbol	Test Condition	MIN	ТҮР	MAX	Unit
Receiver Input Range	V _{RIN}		-30		+30	V
Receiver Input Low Threshold	V _{RIL}		0.8	1.1		V
Receiver Input High Threshold	V _{RIH}			1.5	2.4	V
Receiver Input Hysteresis				0.4		V
Receiver Input Impedance	R _{RIN}		3	5	7	kΩ

(If there is no additional explanation, typical value is tested when VCC=+5V, Temp=25°C, C1~C4=1uF)

Transmitter Output Electrical Characteristics							
Parameter	Symbol	Test Condition	MIN	ТҮР	MAX	Unit	
Transmitter Output Swing	V _{TOUT}	All output ports of transmitter connect 3kΩ load to ground	±5.0	±7.3		V	
Transmitter Output Impedance	R _{TOUT}	VCC=0V, Transmitter Input =±2V	300			Ω	
Transmitter Short-Circuit Current	I _{tsc}			±10	±60	mA	

(If there is no additional explanation, typical value is tested when VCC=+5V, Temp= 25° C, C1~C4=1uF)

Switch Characteristics

Parameter	Symbol	Test Condition	MIN	ТҮР	MAX	Unit
Rate	Speed	RL=3kΩ, CL=1000pF		120		kbps
Receiver	t _{RPHL}	CI = 150pE		0.5	10	us
Propagation delay	t _{RPLH}	CL=150pF		0.5	10	us
Transmitter Slew Rate	SR	RL=3kΩ~7 kΩ, CL=50pF~1000pF form-3.0V to 3.0V or from 3.0V to -3.0V		4		V/us

(If there is no additional explanation, typical value is tested when VCC=+5V, Temp=25°C, C1~C4=1uF)

Detailed Description

1 Dual Charge-Pump Operation

SIT232 has a two-way charge pump inside to support the chip's voltage conversion work. Dual-electric pump converts 5V supply voltage to $\pm 10v$ (no-load) voltage for 232 drives, Each charge pump requires a capacitor (C1,C2) and an energy storage capacitor (C3,C4) to generate v+ and v-power supplies, as shown in Fig 8.

2 RS232 Transmitter

Convert the TTL/CMOS logic voltage to a voltage compatible with the EIA/TIA-232 standard. SIT232 Transmitter can guarantee 120kbps data rate under the worst operating conditions ($3k\Omega$ resistor and 4.5V supply voltage). Transmitter can drive multiple receivers in parallel. The swing rate of the driver is limited to 30v/us in accordance with EIA/TIA-232E requirements.

3 RS232 Receiver

The SIT232 has two separate receivers that convert the RS-232 signal to the CMOS logic output level. EIA/TIA-232E defines a voltage greater than 3V as logic 0, SIT232 all receivers are reversed, so the receiver responding TTL voltage is consistent with the EIA/TIA-232E level.

4 Typical Application

Typical dual-Path application scenarios are shown in Figure 2, where the c1-c5 typical capacitance value is 1uF. The power supply VCC should connect a decoupling capacitor to the ground with the same capacitance as the C1, C2 and is as close to the device as possible.

ſ

SOP16 Dimensions

	Package s	size	
Note Size	MIN/mm	MAX/mm	
A	9.80	10.00	
A1	0.356	0.456	
A2	1.2	27TYP	
A3	0.3	02TYP	
В	3.85	3.95	
B1	5.84	6.24	
B2	5.0	0 TYP	
С	1.40	1.60	
C1	0.61	0.71	
C2	0.54	0.64	
C3	0.05	0.25	
C4	0.203	0.233	
D	1.0	5 TYP	
D1	0.40	0.70	
D2	0.15	0.25	
R1	0.2	20TYP	
R2	0.2	20TYP	
θ1	8 °~1	2 TYP4	
θ2	8 °~1	2 °TYP4	
θ3	0 °~8 °		
θ4	4 °~12 °		
5			

Ordering Information

Ordering code	Temperature	Package
SIT232ESE	-40°C~85°C	SOP16
SIT232EWE	-40°C~85°C	SOPW16

Tape and Reel: Pack quantity is 2,500.