

SN75176B/SN65176B Multipoint RS-485/RS-422 Transceivers

FEATURES

- Meets EIA Standard RS485 for Multipoint Bus Transmission and is Compatible with RS-422.
- Small Outline (SOIC) Package Option Available for Minimum Board Space.
- · 22 ns Driver Propagation Delays.
- Single +5V Supply.
- -7V to +12V Bus Common Mode Range Permits ±7V Ground Difference Between Devices on the Bus.
- . Thermal Shutdown Protection.
- High Impedance to Bus with Driver in TRI-STATE or with Power Off, Over the Entire Common Mode Range Allows the Unused Devices on the Bus to be Powered Down.
- Combined Impedance of a Driver Output and Receiver Input is Less Than One RS485 Unit Load, Allowing up to 32 Transceivers on the Bus.
- 70 mV Typical Receiver Hysteresis.

Connection and Logic Diagram

DESCRIPTION

The SN75176B / SN65176B is a high speed differential TRI-STATE[®] bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to −7V), for multipoint data transmission. In addition, it is compatible with RS-422.

The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of +12V to -7V. Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.

DC specifications are guaranteed over the 0 to 70°C temperature and 4.75V to 5.25V supply voltage range.

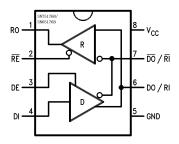


Figure 1. Top View

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

-		· · · · · · · · · · · · · · · · · · ·	
Supply Voltage, V _{CC}	Supply Voltage, V _{CC}		
Control Input Voltages	7V		
Driver Input Voltage	7V		
Driver Output Voltages		+15V/ -10V	
Receiver Input Voltages	+15V/ -10V		
Receiver Output Voltage	5.5V		
Continuous Power Dissipation @ 25°C	for SOIC Package	675 mW ⁽³⁾	
	for PDIP Package	900 mW ⁽⁴⁾	
Storage Temperature Range	•	−65°C to +150°C	
Lead Temperature (Soldering, 4 seconds)	260°C		
ESD Rating (HBM)		500V	

- "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be verified. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
- If Military/Aerospace specified devices are required, please contact the HG Sales Office/Distributors for availability and specifications. Derate linearly @ 6.11 mW/°C to 400 mW at 70°C.
- Derate linearly at 5.56 mW/°C to 650 mW at 70°C.

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Voltage at Any Bus Terminal (Separate or Common Mode)	-7	+12	V
Operating Free Air Temperature T _A			
SN75176B	0	+70	°C
SN65176B	-40	+105	°C
Differential Input Voltage, VID (1)	-12	+12	V

(1) Differential - Input/Output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

Electrical Characteristics (1) (2)

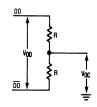
 $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le 70^{\circ}\text{C}$, $4.75\text{V} < \text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{OD1}	Differential Driver Output Voltage (Unloaded)	I _O = 0				5	٧
V _{OD2}	Differential Driver Output	See (Figure 2)	$R = 50\Omega$; (RS-422) ⁽³⁾	2			٧
Voltage (with Load)	Voltage (with Load)		R = 27Ω; (RS-485)	1.5			>
ΔV_{OD}	Change in Magnitude of Driver						
	Differential Output Voltage For					0.2	V
	Complementary Output States						
V _{OC}	Driver Common Mode Output Voltage	See (Figure 2)	R = 27Ω			3.0	V
$\Delta V_{OC} $	Change in Magnitude of Driver					3.0	V
	Common Mode Output Voltage					0.2	V
	For Complementary Output States					0.2	V

All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

All typicals are given for V_{CC} = 5V and T_A = 25°C. All worst case parameters for which this note is applied, must be increased by 10% for SN75176BT. The other parameters remain valid for -40° C < T_A < $+85^{\circ}$ C.

Electrical Characteristics ⁽¹⁾ (continued) $0^{\circ}\text{C} \leq \text{T}_{A} \leq 70^{\circ}\text{C}$, 4.75V < V_{CC}< 5.25V unless otherwise specified


Symbol	Parame	ter	Conditions		Min	Тур	Max	Units
V _{IH}	Input High Voltage		<u>.</u>		2			V
V _{IL}	Input Low Voltage						0.8	
V_{CL}	Input Clamp Voltage		DI, DE, RE , E	I _{IN} = −18 mA			-1.5	
I _{IL}	Input Low Current		, _	$V_{IL} = 0.4V$			-200	μA
I _{IH}	Input High Current			$V_{IH} = 2.4V$			20	μA
I _{IN}	Input Current	DO/RI, DO/RI	V _{CC} = 0V or 5.25V	V _{IN} = 12V			+1.0	mA
			DE = 0V	V _{IN} = −7V			-0.8	mA
V _{TH}	Differential Input Threshold Voltage for Receiver		-7V ≤ V _{CM} ≤ + 12V		-0. 2		+0.2	V
ΔV_{TH}	Receiver Input Hysteres	is	$V_{CM} = 0V$			70		mV
V _{OH}	Receiver Output High Vo	oltage	I _{OH} = -400 μA		2.7			V
V _{OL}	Output Low Voltage	RO	I _{OL} = 16 mA ⁽³⁾				0.5	V
I _{OZR}	OFF-State (High Impeda	ance)	V _{CC} = Max				±20	μA
	Output Current at Recei	ver	$0.4 \text{V} \le \text{V}_{\text{O}} \le 2.4 \text{V}$					
R _{IN}	Receiver Input Resistan	ce	-7V ≤ V _{CM} ≤ +12V		12			kΩ
I _{CC}	Supply Current		No Load ⁽³⁾	Driver Outputs Enabled			55	mA
				Driver Outputs Disabled			35	mA
I _{OSD}	Driver Short-Circuit		$V_{O} = -7V^{(3)}$				-250	mA
	Output Current		$V_{O} = +12V^{(3)}$				+250	mA
I _{OSR}	Receiver Short-Circuit		$V_O = 0V$		-15		-85	mA
	Output Current							

Switching Characteristics $V_{CC} = 5.0V$, $T_A = 25$ °C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Driver Input to Output	$R_{LDIFF} = 60\Omega$		12	22	ns
t _{PHL}	Driver Input to Output	$C_{L1} = C_{L2} = 100 \text{ pF}$		17	22	ns
t _r	Driver Rise Time	$R_{LDIFF} = 60\Omega$			18	ns
t _f	Driver Fall Time	$C_{L1} = C_{L2} = 100 \text{ pF}$			18	ns
		(Figure 4 and Figure 6)				
t _{ZH}	Driver Enable to Output High	C _L = 100 pF (Figure 5 and Figure 7) S1 Open		29	100	ns
t _{ZL}	Driver Enable to Output Low	C _L = 100 pF (Figure 5 and Figure 7) S2 Open		31		ns
t _{LZ}	Driver Disable Time from Low	C _L = 15 pF (Figure 5 and Figure 7) S2 Open	13		30	ns
t _{HZ}	Driver Disable Time from High	C _L = 15 pF (Figure 5 and Figure 7) S1 Open	19		200	ns
t _{PLH}	Receiver Input to Output	C _L = 15 pF (Figure 3 and Figure 8)		30	37	ns
t _{PHL}	Receiver Input to Output	S1 and S2 Closed		32	37	ns
t _{ZL}	Receiver Enable to Output Low	C _L = 15 pF (Figure 3 and Figure 9) S2 Open		15	20	ns
t _{zH}	Receiver Enable to Output High	C _L = 15 pF (Figure 3 and Figure 9) S1 Open	11		20	ns
t_{LZ}	Receiver Disable from Low	C _L = 15 pF (Figure 3 and Figure 9) S2 Open		28	32	ns
t _{HZ}	Receiver Disable from High	C _L = 15 pF (Figure 3 and Figure 9) S1 Open		13	35	ns

AC TEST CIRCUITS

TEST POINT SI 1k

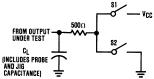
OUTPUT

CL

IINCLUDES PROBE
AND JIG

CAPACITANCE)

RECEIVER
POINT
SI


Ik

ALL DIODES
N9916 OR
N43064

Note: S1 and S2 of load circuit are closed except as otherwise mentioned.

Figure 4.

Figure 3.

Note: Unless otherwise specified the switches are closed.

Figure 5.

Switching Time Waveforms

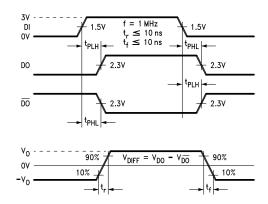


Figure 6. Driver Propagation Delays and Transition Times

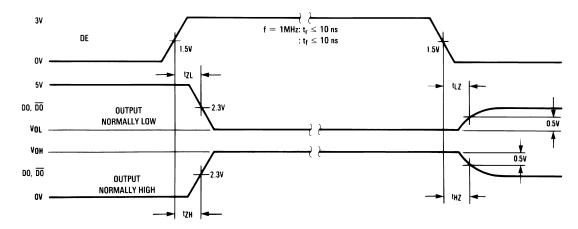
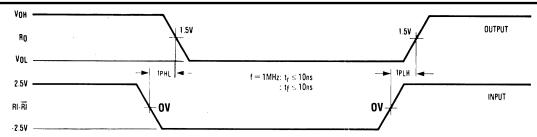



Figure 7. Driver Enable and Disable Times

Note: Differential input voltage may may be realized by grounding RI and pulsing RI between +2.5V and −2.5V

Figure 8. Receiver Propagation Delays

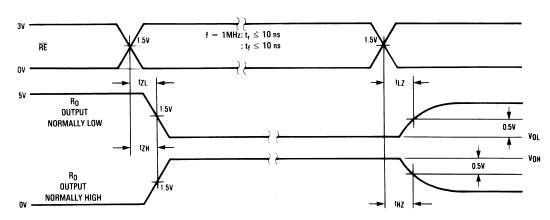


Figure 9. Receiver Enable and Disable Times

Function Tables

Table 1. SN75176B Transmitting⁽¹⁾

Inputs		Line Condition	Out	outs	
RE	DE	DI		DO	DO
Х	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	X	Z	Z
Х	1	X	Fault	Z	Z

(1) X — Don't care condition Z — High impedance state

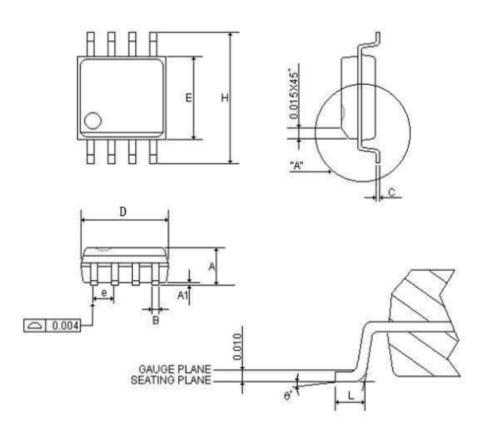
Fault — Improper line conditions causing excessive power dissipation in the driver, such as shorts or bus contention situations

Table 2. SN75176B Receiving⁽¹⁾

	Inputs				
RE	DE	RI-RI	RO		
0	0	≥ +0.2V	1		
0	0	≤ -0.2V	0		
0	0	Inputs Open**	1		
1	0	X	Z		

(1) X — Don't care condition

Z — High impedance state


Fault — Improper line conditons causing excessive power dissipation in the driver, such as shorts or bus contention situations

**This is a fail safe condition

^{**}This is a fail safe condition

SOP 8

SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX
(inch)			(mm)			
Α	0.058	0.064	0.068	1.4732	1.6256	1.7272
A1	0.004	-	0.010	0.1016	-	0.254
В	0.013	0.016	0.020	0.3302	0.4064	0.508
С	0.0075	0.008	0.0098	0.1905	0.2032	0.2490
D	0.186	0.191	0.196	5.9944	6.1214	6.1976
E	0.150	0.154	0.157	3.81	3.9116	3.9878
e	-	0.050	-	-	1.27	-
н	0.228	0.236	0.244	5.7912	5.9944	6.1976
L	0.015	0.025	0.050	0.381	0.635	1.27
0°	0 °	-	8°	0 °	-	8°