www．．xinluda．com 信路达

Features

－Operating voltage： $2.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$
－Minimal external components
－No external filter is required
－Low standby current（on power down mode）
－Excellent performance
－Tristate data output for MCU interface
－ 3.58 MHz crystal or ceramic resonator
－ 1633 Hz can be inhibited by the INH pin

General Description

The XD／XL9170 are Dual Tone Multi Frequency（DTMF） receivers integrated with digital decoder and bandsplit filter functions as well as power－down mode and inhibit mode operations．Such devices use digital counting techniques to detect and decode all the 16 DTMF tone pairs into a 4－bit code output．
Highly accurate switched capacitor filters are imple－ mented to divide tone signals into low and high group signals．A built－in dial tone rejection circuit is provided to eliminate the need for pre－filtering．

Ordering information

Ordering Information								
part Number	Device Marking	Package type	Body size $(\mathbf{m m})$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	MSL	Transport Media	Package Quantity	
XL9170	XL9170	S0P－18	$11.45 * 7.5$	-20 to +75	MSL3	T\＆R	1000	
XD9170	XD9170	DIP－18	$22.90 * 6.50$	-20 to +75	MSL3	Tube 20	800	

Block Diagram

WWW．XINLUDA．COM 信路迏

Pin Assignment

Pin Description

Pin Name	I／O	Internal Connection	Description
VP	I	Operational Amplifier	Operational amplifier non－inverting input
VN	1		Operational amplifier inverting input
GS	0		Operational amplifier output terminal
VREEF	0	VREF	Reference voltage output，normally $\mathrm{V}_{\mathrm{DD}} / 2$
X1	1		The system oscillator consists of an inverter，a bias resistor and the necessary
X2	0		A standard 3.579545 MHz crystal connected to X 1 and X 2 terminals imple－ ments the oscillator function．
PWDN	I	CMOS IN Pull－low	Active high．This enables the device to go into power down mode and inhibits the oscillator．This pin input is internally pulled down．
INH	I	CMOS IN Pull－low	Logic high．This inhibits the detection of tones representing characters A，B，C and D ．This pin input is internally pulled down．
VSS	－	－	Negative power supply，ground
OE	I	CMOS IN Pull－high	D0～D3 output enable，high active
D0～D3	O	CMOS OUT Tristate	Receiving data output terminals OE＝＂H＂：Output enable OE＝＂L＂：High impedance
DV	O	CMOS OUT	Data valid output When the chip receives a valid tone（DTMF）signal，the DV goes high；other－ wise it remains low．
EST	O	CMOS OUT	Early steering output（see Functional Description）
RT／GT	I／O	CMOS IN／OUT	Tone acquisition time and release time can be set through connection with ex－ ternal resistor and capacitor．
VDD	－	－	Positive power supply，2．5V $\sim 5.5 \mathrm{~V}$ for normal operation

WWW．XINLUDA．COM 信路迏

Approximate internal connection circuits

OPERATIONAL AMPLIFIER	VREF	OSCILLATOR	CMOS IN Pull－high	CMOS OUT Tristate
		CMOS IN Pull－low		

Absolute Maximum Ratings

Supply Voltage ．	．．．．．．－0．3V to 6V	Storage Temperature ．．．．．．．．．．．．．．．．．．．．．．．．．$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage	． $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Operating Temperature．．．．．．．．．．．．．．．．．．．．．．．．$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Note：These are stress ratings only．Stresses exceeding the range specified under＂Absolute Maximum Ratings＂may cause substantial damage to the device．Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliabil－ ity．

D．C．Characteristics
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min．	Typ．	Max．	Unit
		V ${ }_{\text {D }}$	Conditions				
$V_{D D}$	Operating Voltage	－	－	2.5	5	5.5	V
IDD	Operating Current	5 V	－	－	3.0	7	mA
IStB	Standby Current	5 V	PWDN＝5V	－	10	25	$\mu \mathrm{A}$
VIL	＂Low＂Input Voltage	5 V	－	－	－	1.0	V
V_{IH}	＂High＂Input Voltage	5 V	－	4.0	－	－	V
IIL	＂Low＂Input Current	5 V	$\mathrm{V}_{\mathrm{VP}}=\mathrm{V}_{\mathrm{VN}}=0 \mathrm{~V}$	－	－	0.1	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {l }}$	＂High＂Input Current	5 V	$\mathrm{V}_{\mathrm{VP}}=\mathrm{V}_{\mathrm{VN}}=5 \mathrm{~V}$	－	－	0.1	$\mu \mathrm{A}$
Roe	Pull－high Resistance（OE）	5 V	$\mathrm{V}_{\mathrm{OE}}=0 \mathrm{~V}$	60	100	150	$\mathrm{k} \Omega$
$\mathrm{R}_{\text {IN }}$	Input Impedance（VN，VP）	5 V	－	－	10	－	$\mathrm{M} \Omega$
IOH	Source Current（D0～D3，EST，DV）	5 V	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	－0．4	－0．8	－	mA
loL	Sink Current（D0～D3，EST，DV）	5 V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	1.0	2.5	－	mA
fosc	System Frequency	5 V	Crystal $=3.5795 \mathrm{MHz}$	3.5759	3.5795	3.5831	MHz

WWw．XINLUDA．COM 信路达

A．C．Characteristics

$\mathrm{f}_{\mathrm{OSC}}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min．	Typ．	Max．	Unit
		V_{DD}	Conditions				
DTMF Signal							
	Input Signal Level	3 V		－36	－	－6	dBm
		5 V		－29	－	1	
	Twist Accept Limit（Positive）	5 V		－	10	－	dB
	Twist Accept Limit（Negative）	5 V		－	10	－	dB
	Dial Tone Tolerance	5 V		－	18	－	dB
	Noise Tolerance	5 V		－	－12	－	dB
	Third Tone Tolerance	5 V		－	－16	－	dB
	Frequency Deviation Acceptance	5 V		－	－	± 1.5	\％
	Frequency Deviation Rejection	5 V		± 3.5	－	－	\％
tpu	Power Up Time（See Figure 4．）	5 V		－	30	－	ms
Gain Setting Amplifier							
$\mathrm{R}_{\text {IN }}$	Input Resistance	5 V	－	－	10	－	$\mathrm{M} \Omega$
I_{N}	Input Leakage Current	5 V	$\mathrm{V}_{\mathrm{SS}}<\left(\mathrm{V}_{\mathrm{VP}}, \mathrm{V}_{\mathrm{VN}}\right)<\mathrm{V}_{\mathrm{DD}}$	－	0.1	－	$\mu \mathrm{A}$
Vos	Offset Voltage	5 V	－	－	± 25	－	mV
PSRR	Power Supply Rejection	5 V	$\begin{aligned} & 100 \mathrm{~Hz} \\ & -3 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<3 \mathrm{~V} \end{aligned}$	－	60	－	dB
$\mathrm{C}_{\text {MRR }}$	Common Mode Rejection	5 V		－	60	－	dB
Avo	Open Loop Gain	5 V		－	65	－	dB
f_{T}	Gain Band Width	5 V	－	－	1.5	－	MHz
V OUT	Output Voltage Swing	5 V	$\mathrm{R}_{\mathrm{L}}>100 \mathrm{k} \Omega$	－	4.5	－	V_{PP}
R_{L}	Load Resistance（GS）	5 V	－	－	50	－	$\mathrm{k} \Omega$
C_{L}	Load Capacitance（GS）	5 V	－	－	100	－	pF
V_{CM}	Common Mode Range	5 V	No load	－	3.0	－	$V_{\text {PP }}$

Steering Control

$t_{\text {DP }}$	Tone Present Detection Time			5	16	22	ms
$t_{\text {DA }}$	Tone Absent Detection Time			-	4	8.5	ms
$t_{\text {ACC }}$	Acceptable Tone Duration			-	-	42	ms
$t_{\text {REJ }}$	Rejected Tone Duration			20	-	-	ms
$\mathrm{t}_{\text {IA }}$	Acceptable Inter－digit Pause			-	-	42	ms
$\mathrm{t}_{\text {IR }}$	Rejected Inter－digit Pause			20	-	-	ms
tPDO	Propagation Delay（RT／GT to DO）			-	8	11	$\mu \mathrm{~s}$
tPDV	Propagation Delay（RT／GT to DV）			-	12	-	$\mu \mathrm{s}$
$t_{\text {DOV }}$	Output Data Set Up（DO to DV）			-	4.5	-	$\mu \mathrm{s}$
$t_{\text {DDO }}$	Disable Delay（OE to DO）			-	300	-	ns
$\mathrm{t}_{\text {EDO }}$	Enable Delay（OE to DO）			-	50	60	ns

Note：DO＝D0～D3

WWW．XINLUDA．COM 信路迏

Figure 1．Test circuit

Functional Description

Overview

TheXD／XL9170 tone decoders consist of three band pass filters and two digital decode circuits to convert a tone（DTMF）signal into digital code output．
An operational amplifier is built－in to adjust the input sig－ nal（refer to Figure 2）．

Figure 2．Input operation for amplifier application circuits

The pre－filter is a band rejection filter which reduces the dialing tone from 350 Hz to 400 Hz ．
The low group filter filters low group frequency signal output whereas the high group filter filters high group frequency signal output．

Each filter output is followed by a zero－crossing detector with hysteresis．When each signal amplitude at the out－ put exceeds the specified level，it is transferred to full swing logic signal．

When input signals are recognized to be effective，DV becomes high，and the correct tone code（DTMF）digit is transferred．

Steering control circuit

The steering control circuit is used for measuring the ef－ fective signal duration and for protecting against drop out of valid signals．It employs the analog delay by exter－ nal RC time－constant controlled by EST．
The timing is shown in Figure 3．The EST pin is normally low and draws the RT／GT pin to keep low through dis－ charge of external RC．When a valid tone input is de－ tected，EST goes high to charge RT／GT through RC．

When the voltage of RT／GT changes from 0 to $\mathrm{V}_{\text {TRT }}$ （ 2.35 V for 5 V supply），the input signal is effective，and the correct code will be created by the code detector．Af－ ter D0～D3 are completely latched，DV output becomes high．When the voltage of RT／GT falls down from VDD to $V_{\text {TRT }}$（i．e．．，when there is no input tone），DV output be－ comes low，and D0～D3 keeps data until a next valid tone input is produced．

By selecting adequate external RC value，the minimum ac－ ceptable input tone duration（ $\mathrm{t}_{\mathrm{ACC}}$ ）and the minimum ac－ ceptable inter－tone rejection（ t_{R} ）can be set．External components（R，C）are chosen by the formula（refer to Fig－ ure 5．）：
$\mathrm{t}_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{DP}}+\mathrm{t}_{\mathrm{GTP}} ;$
$\mathrm{t}_{\mathrm{IR}}=\mathrm{t}_{\mathrm{DA}}+\mathrm{t}_{\mathrm{GTA}} ;$
where $t_{\text {ACC }}$ ：Tone duration acceptable time
$t_{D P}$ ：EST output delay time（＂L＂\rightarrow＂ $\mathrm{H}^{\prime \prime}$ ）
$\mathrm{t}_{\mathrm{GTP}}$ ：Tone present time
t_{R} ：Inter－digit pause rejection time
$t_{\text {DA }}$ ：EST output delay time（＂ $\mathrm{H}^{\prime \prime} \rightarrow$＂ L ＂）
$t_{\text {GTA：}}$ ：Tone absent time

WWw．XINLUDA．COM 信路达

Timing Diagrams

Figure 3．Steering timing

Figure 4．Power up timing

WWW．XINLUDA．COM 信路迏

Figure 5．Steering time adjustment circuits
DTMF dialing matrix

DTMF data output table

Low Group（Hz）	High Group（Hz）	Digit	OE	D3	D2	D1	D0
697	1209	1	H	L	L	L	H
697	1336	2	H	L	L	H	L
697	1477	3	H	L	L	H	H
770	1209	4	H	L	H	L	L
770	1336	5	H	L	H	L	H
770	1477	6	H	L	H	H	L
852	1209	7	H	L	H	H	H
852	1336	8	H	H	L	L	L
852	1477	9	H	H	L	L	H
941	1336	0	H	H	L	H	L
941	1209	$*$	H	H	L	H	H
941	1477	$\#$	H	H	H	L	L
697	1633	A	H	H	H	L	H
770	1633	B	H	H	H	H	L
852	1633	C	H	H	H	H	H
941	1633	D	H	L	L	L	L
-	-	ANY	L	Z	Z	Z	Z

Note：＂Z＂High impedance；＂ANY＂Any digit
www．xinluda．com 信路达

Data output

The data outputs（D0～D3）are tristate outputs．When OE input becomes low，the data outputs（D0～D3）are high imped－ ance．

Application Circuits

Application Circuit 1

Note：X＇tal $=3.579545 \mathrm{MHz}$ crystal
$\mathrm{C} 1=\mathrm{C} 2 \cong 20 \mathrm{pF}$
X＇tal $=3.58 \mathrm{MHz}$ ceramic resonator
$\mathrm{C} 1=\mathrm{C} 2 \cong 39 \mathrm{pF}$

Application Circuit 2

Note：X＇tal $=3.579545 \mathrm{MHz}$ crystal
$\mathrm{C} 1=\mathrm{C} 2 \cong 20 \mathrm{pF}$
X＇tal $=3.58 \mathrm{MHz}$ ceramic resonator
$\mathrm{C} 1=\mathrm{C} 2 \cong 39 \mathrm{pF}$

WWw．XINLUDA．COM 信路达

DIP18封装尺寸图

symbol	millimeter		
	Min	Nom	Max
A	3.20	3.30	3.40
b	0.44	-	0.53
b1	0.43	0.46	0.49
c	0.25	-	0.30
c1	0.24	0.25	0.26
D	22.80	22.90	23.00
E	6.40	6.50	6.60
e	2.54 BSC		
eA	8.30	8.80	9.30
L	3.00	-	--

SECTION A－A

SOP18封装尺寸图

SYMB0L	表示	MIN	NOM	MAX	
A	总长	11.25	11.45	11.65	
A1	脚宽	0.40 TYP			
A2	脚间距	1.27 TYP			
B	跨度	10.10	10.30	10.50	
B1	胶体宽度	7.30	7.50	7.70	
C	胶体厚度	2.24	2.34	2.44	
C1	上胶体厚	1.05 TYP			
C2		0.20	0.26	0.33	
C3	站高	0.10	0.15	0.25	
D	单边长	1.30	1.40	1.50	
D1	脚长	0.70	0.80	1.00	
E	脚厚	0.20	0.25	0.30	
E1	脚角度	0°	4°	8°	
E2		$7^{\circ} \mathrm{TYP}$			
E3		$5^{\circ} \mathrm{TYP}$			
R1					
R2					

DETAIL＂X＂

Xinluda reserves the right to change the above information without prior notice．

