

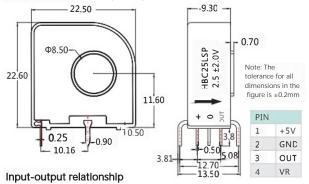
HBC-LSP Closed loop series Hall current sensor

HBC-LSP series single-supply Hall current sensor is a closed-loop Hall current sensor developed by applying Hall effect principle. It can measure DC, AC, pulse and various irregular waveforms of current under the condition of electrical isolation.

Product Feature		Application			
High precision	• Fast response time	Solar energy junction boxInverter appliance			
 Good linearity 	 Good overload capability 				
 low power consumption 	 High stability 	•,AC/DC VSD			
• Strong anti-interference ability	 Small package structure 	Battery Management			

Electrical characteristics: (The following parameters, if not specified, are tested at room temperature 25C,+5VDC)

HBC-LSP	HBC06LSP	HBC20LSP	HBC25LSP	HBC50LSP		
Rated CurrentIpn (A) PEAK	06	20	25	50		
Measurement Rangelp (A)	0~±6	0~±20	0~±25	0~±50		
Measuring Resistance Rm (),25PPM	100±0.1%	100±0.1%	50±0.1%	50±0.1%		
Turns Per Coil Ns(T)	960	1000	625	1250		
Sensitivity G(mV/A)	120	100	80	40		
Output Voltage Vo(V)	2.5±2.0*(Ip/Ipn)					
Power Supply Vc(V)	+5VDC ±5%					
Isolation VoltageVd(V)	50/60Hz, 1min, 4.0kV;RMS					
Surge Vw(V)	@ at 1.2/50μs,>8.0KV					
Output Load Capacitance CI(nF)	<10nF @Vo~GND					


Dynamic Characteristics

3	e Temperature Drift Vot @-40°C~+85°C				
Precision Xg	@ Ipn,T=25°C	<±0.7	%		
Zero Offset Voltage Voe @ Ip=0,T=25°C Offset Voltage Temperature Drift Vot @-40°C~+85 Linearity Er di/dt response time tra @ 90% of lpn Operating Bandwidth BW -1dB	@ Ip=0,T=25°C	<±50	mV		
Offset Voltage Temperatu	re Drift Vot @-40°C~+85'C	<±0.5	mV/°C		
Linearity Er		≤0.1	%FS		
di/dt		>50	A/us		
response time tra	@ 90% of lpn	<1.0	μs		
Operating Bandwidth BW	-1dB	DC-200	KHz		
Current Loss Ic	@+5VDC	10+Is	mA		

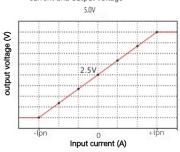
General Characteristic

Operating Temperature	-40 ~ +85	°C
Storage Temperature	-40 ~ +125	°C
Actual Weight	10	g

Structure Chart (mm)

Taking HBC20LSP as an example, the relationship between input current and output voltage is shown in Figure 1 and Table 1:

Table 1 : Input/output relationships


Table 1. Input output relationships									
Input Current(A)	-20	-15	-10	-5	0	5	10	15	20
Output voltage AA	0.5	1	1.5	2	2.5	3	3.5	4	45

Note: VR is an external reference voltage of 2.5V specially provided by our company for customers to facilitate the real acquisition and comparison of customers' signals; This reference voltage is the reference voltage used by the internal circuit of our product, and the error between it and the offset voltage of the product is small; Customers can choose to use it or leave it vacant, and there is no impact on the performance and use of the product itself.

Instructions

- 1. Access the current according to the calibration direction of the wiring diagram; Pay attention to the positive and negative currents;
- 2. According to the functional pin defined in the structure diagram to connect;
- 3. The temperature of the primary conductor should not exceed 100 degrees Celsius;
- 4. The busbar should be completely full of primary perforation dynamic response and DI/DT following accuracy is the best;
- 5. The above specifications are calibration specifications, our company can $\,$ customize products according to customer requirements.
- 6. If our products have new changes, please do not notice, based on the actual product parameters.

Figure 1. Relationship between input current and output voltage

