AHAPE AND DIMENSONS

Snap-in (CD293)

Rated voltag e (v)	Surge Voltag e (V)	Cap (µF)	(size)	(Ter mina l type)	(Temperat ure)	5℃) (Nominal capacitan ce tolerance)	(20± 5°C) Dissip ation factor	(µA) (20± 5°C) Leakag e current	(A) Rated ripple curret	Enduran ce (hours) at 105 ± 2°C120HZ
400	450	220	25.4×45	Snap -in	-25~+105℃	±20%	≪0.15	≤889	1.14	2000

Issued-date:2023-03-21	Name	Approval Sheet-FT			
	File No	LX Version 00 Page			
STANDARD MANUAL					

1. SCOPE

This specification covers CD293 "LX" series Snap-in and Lug type aluminum electrolytic capacitors.

2. APPLICABLE SPECIFICATION

Japanese Industrial Standard GB/T2963-2001、 Characteristics and IEC60384-1-1999 except as specified in this specification.

3. OPERAT ING TEMPERATURE RANGE

-Operating temperature range is the range of ambient temperature at which the capacitor can be

operated continuously at rated voltage.

-25∼+105°C

4. CHARACTERISTICS

Unless otherwise specified, the standard range of atmospheric conditions for making Measurements and tests are as follows.

Ambient temperature:15 to35℃

Relative humidity:45 to 75%

Air pressure:86kpa to 106kpa

If there may be doubt on the results, measurements shall be made within the following limits.

Ambient temperature: $25 \pm 2^{\circ}$ C

Relative humidity:60 to 70%

Air pressure:86kpa to 106kpa

Issued-date:2023-03-21	Name	Approval Sheet-FT			
	File No	LX Version 00 Page			
STANDARD MANUAL					

4.1 ELECTRICAL CHARACTERISICS

NO	Item	Test method	Performancs
4.1.1	Rated voltage		DC : 400V
4.1.2	Capacitance	Measuring frequency:120Hz±20% Measuring circuit: Series equivalent circuit Measuring voltage: 0.5Vrms or less +1.5 to 2.0VDC	220 μ F Capacitance tolerance: ±20% C:Capacitance(μF)
4.1.3	Dissipation Factor	Testing condition are the same as 4.1.2 for capacitance	tg δ ≤0.15
4.1.4	Leakage current	The rated voltage shall be applied across the capacitor and its protective resistor which shall then be measured after an electrification period of 5 min. Measurement circuit	Voltage 400V After 5 minutes Ic≤889 Ic:Leakage current(µA) V:Rated voltage(V)
		DC ammeter DC voltmeter S1:Switch S2:Protective switch for an ammeter	

Issued-date:2023-03-21	Name	Approval Sheet-FT			
	File No	LX Version 00 Page			
STANDARD MANUAL					

4.1.5	Surge Test	Voltage application: 1000 times of charging for 30 ± 5 sec, with a period	Capacitance:Not less than 80% of value before
		or 5.5±0.5min. Test temperature: 15℃-35℃	test. Dissipation factor:
		And the capacitor shall be stored under standard	Not more 200% of the
		stability, after which measurements shall be	specified value in Table-1.
		made.	Leakage current:
			To satisfy No.4.1.4
		Test circuit	
		Note:This requirement is applicable only to instantaneous	over voltage which may be
		applied to terminals of capacitor, therefore, not applicable often applied	to such Over voltages as

Issued-date:2023-03-21	Name	Approval Sheet-FT			
	File No	LX Version 00 Page			
STANDARD MANUAL					

4.2 MECHANICAL PERFORMANCE

	-		
NO	Item	Test method	Performancs
4.2.1	TERMINAL STRENGTH	 Terminal tensile strength: 1. Firstly measure riveting thicknes of the cover plate with a cursor caliper. Then put the cover into the mold and add to 200N with a sputtering pull gauge. And then take out the cover and measure the thickness again. 2. Put the cover into the test mold, add to 350N. Observe if the welding needle will fall off. 	 If the thickness of the two rivets does not change, the result is qualified. If the second one is thicker than the first one, the test is failed. The welding needle should n ot fall off during the test. Other wise the test is failed.
4.2.1	Resistance to Vibration	To comply with JIS C 5102 8.2and JIS C5025 Direction and duration of vibration: 3 orthogonal directions mutually each for 2h,Total 6h.	When the capacitance is measured there shall be no intermittent contacts,or open or short circuiting There shall be no such mechanical damage.
4.2.3	Solder ability	To comply with IEC60068-2-2 Temperature or solder: 230 ± 5 °C Dipping time: 2 ± 0.5 sec. This specification shall be met after the capacitors are stored under standard atmospheric conditions for 6 months.	At least 3/4f circumferential surface of the dipping portion of termination shall be covered with new solder.

Issued-date:2023-03-21	Name	Approval Sheet-FT			
	File No	LX Version 00 Page			
STANDARD MANUAL					

4.3 ENDURANCE PERFORMANCE

NO	Item	Test method	Performancs
4.3.1	Resistance to soldering heat	Solder bath method Solder temperature:260±5℃ Immersion time : 10±1sec. Printed wiring board:1.6mm	Variation of capacitance: Within ±10% of the value before test. Dissipation factor: To satisfy Table 1. Leakage current: To satisfy No 4.1.4 Appearance: No remarkable abnormality.
4.3.2	Resistance to damp heat(steady state)	To comply with JIS C 5023 Test Temperature: 40 ± 2 °C Test time: $240\pm 8h$. Relative humidity: $90\sim 95\%$ After completion of test,the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours,after which measurements shall be made.	<pre>Variation of capacitance: Within ±15% of the value before test. Dissipation factor: To satisfy Table 1. Leakage current: To satisfy No 4.1.4 Appearance: No remarkable abnormality.</pre>
4.3.3	Load life	Aftet applying rated voltage with maximum ripple current for 2000h at 105°C and then resumed for 24 hours.	Variation of capacitance: Within ±20% of the value before test. Dissipation factor: Not more than 200% of the specified value in Table 1. Leakage current : To satisfy No 4.1.4 Appearance: No remarkable abnormality.

Issued-date:2023-03-21	Name	Approval Sheet-FT			
	File No	LX Version 00 Page			
STANDARD MANUAL					

NO	Item	Test method	Performance
4.3.4	SHELF LIFE TEST	The capacitors are then stor voltage applied at a tempera $\pm 2^{\circ}$ C for 1000 ₋₀ ⁺⁴⁸ h and th hours.	ed with no ture of 105 \pm 20% of the value before test. Dissipation factor: Not more than 200% of the specified value in Table 1. Leakage current: Not more than 200% of the satisfy No.4.1.4 Appearance: No remarkable abnormality.
4.3.5	SAFETY VENT	Applied voltage:AC volta exceeding 0.7 times of th voltage or 250 V AC wh low Frequency: 50 Hz or 60 H resistor:refer to the table be	ge not e rated direct chever is the z. Series low. The vent device is actuated under the test conditions,thereby preventing terminals,metal pieces,etc,of the capacitor from scattering due to burst,the case from separating from the seal packing,or the capacitor from producing flame.
		Capacitance(C) Seri	es resistor
		C≤1 µ F 100	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ω
		$\begin{array}{ c c c } F \\ \hline 10 \ \mu F \\ \hline \mu F \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c } F \\ \hline 10 \ \mu F \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c } F \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \\ \\ \\ \\	
		$\begin{array}{ c c c c c }\hline 100 \ \mu \ F \ < C \leqslant \ 1 \ \Omega \\ 1000 \ C \ \hline \end{array}$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
		10000 μ F <c *<="" td=""><td></td></c>	
Issued-c	late:2023-03-21	Name Approval Sheet	-FT
		FIIE NO LX STANDARD M	version 00 Page IANUAL

	*Resistance is equivalent to a half	
	impedance by test frequency.	
	DC test	
	Where case size:	
	D≤22.4mm: 1A d.c.max	
	D>22.4mm: 10A d.c.max	
	Note:1.This requirement applies to	
	capacitors with diameter of 6mm or	
	more.	
	2 When the pressure relief divice does	
	not overen 30minutes after	
	and over something after the test may be	
	t 1	
	ended.	

Frequency correction fator for ripple current

Freq(Hz)	50	120	500	1K	10~50K
10~100	0.90	1.0	1.05	1.10	1.15
160~250	0.80	1.0	1.10	1.13	1.18
$315 \sim 450$	0.80	1.0	1.05	1.10	1.15

Temperature coefficient

(°C)	<mark>≪6</mark> 5	85	105
coefficient	2.1	1.7	1.0

Issued-date:2023-03-21	Name	Approval Sheet-FT				
	File No	LX Version 00 Page				
STANDARD MANUAL						

5. MARKING

- 5.1 The following items shall be marked indelibly on the capacitor.
- (1) DM trade mark.
- (2) Rated voltage
- (3) Type and specification
- (4) Polarity of the terminals
- (5) Pacted temperature

5. 2 Sleeve color: black

Marking color: white

6. PACKING

6.1 PACKING LABEL

CD293	±20%
400V220 μ F	25.4×45
648 只	

Issued-date:2023-03-21	Name	Approval Sheet-FT				
	File No	LX Version 00 Page				
STANDARD MANUAL						

6.2 Bulk packing capacitors are packed into PVC bags, inner BOX and cartons

inner box

carton

Φ25.4 :

Ф25.4×45	550×275×255	648	265×265×47/8*8	81	8
----------	-------------	-----	----------------	----	---

Package

Issued-date:2023-03-21	Name	Approval Sheet-FT				
	File No	LX Version 00 Page				
STANDARD MANUAL						

8.1 IMPORTANT INFORMATION ON THE APPLICATION OF ALUMINUM ELECTROLYTIC CAPACITORS

When reverse voltage is applied on DC electrolytic capacitor, the capacitor will becomes short circuited please use non polarized capacitors in the circuit be damage due to abnormal current flows through the capacitors since the circuit where the positive voltage may be applied to the cathode terminal.

(2) Use capacitor within rated voltage

8.

When capacitor is used at higher voltage than the rated voltage, leakage current increases, characteristics drastically deteriorste and damage in a short period may occur as a result. Please take extra caution that the peak voltage should not exceed the rated voltage.

(3) Charge and discharge application.

When aluminum electrolytic capacitors for general purpose are employed in rapid charge and discharge application, its life expectancy may be shortened by capacitance decrease, heat rise, etc.

(4) Store the capacitor

I creased leakage current is common in aluminum capacitors which have been stored for long period of time. The Higher the storage temperature, the higher the leakage current increase, therefore please take precautions concerning the storage location. The leakage current

Issued-date:2023-03-21	Name	Approval Sheet-FT				
	File No	LX Version 00 Page				
STANDARD MANUAL						

decrease gradually as voltage is applied to the capacitor. In cases where increased leakage current causes problems in the circuit, apply voltage (aging) before using.

(5) Ripple current applied to capacitor should not exceed the rated value.

Excessive heat will reduce capacitance and result in shortened life of capacitorif ripple currents exceeding the specified rated value are applied. The peak value of the ripple voltage should be less than the rated voltage.

(6) Lead stress

When a strong force is applied to the lead wires or terminals, stress is put on the internal connections. This may result in short circuit, open circuit or increased leakage current. It is not advisable to bend or handle a capacitor after it has been soldered to the PC board.

(7) Heat resistance at the soldering process

In the dip soldering process of PC board with aluminum electrolytic capacitors mounted, secondary shrinkage or crack of PVC sleeve may be observed when solder temperature is too high or dipping time is too long.

(8) Hole pitch and position of PC board.

A PC board must be designed so its hole pitch coincides with the lead pitch(lesd spacing) of the capacitor specified by the catalog or specifications.when a capacitor is forcibly inserted into an unmatached hole pitch, a stress is put on the leads.This could result in a short circuit or increased leakage current.

8.2 This product is lead free and environmental friendly

Issued-date:2023-03-21	Name	Approval Sheet-FT				
	File No	LX Version 00 Page				
STANDARD MANUAL						