Middle Power LED Series 3030

LM301B CRI 90

Features \& Benefits

- 0.3 W class middle power LED
- Mold resin for high reliability
- Standard form factor for design flexibility $(3.0 \times 3.0 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information 5
3. Typical Characteristics Graphs 12
4. Outline Drawing \& Dimension 16
5. Reliability Test Items \& Conditions 17
6. Soldering Conditions 18
7. Tape \& Reel 19
8. Label Structure 21
9. Packing Structure 22
10. Precautions in Handling \& Use 25
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+120$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{j}	110	${ }^{\circ} \mathrm{C}$	-
Forward Current	$I_{\text {F }}$	200	mA	-
Pulse Forward Current	Ifp	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Unit	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (V_{F})	V	XA	AY	2.6	-	2.7
			AZ	2.7	-	2.8
			A1	2.8	-	2.9
Reverse Voltage (@ 5 mA)	V			0.7	-	1.2
Color Rendering Index (Ra_{a})	-			90	-	-
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$			-	7.5	-
Beam Angle	-			-	120	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, C R I= \pm 3$
c) Electro-optical Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

			SF		SG		SH		SJ		Current
Item	CRI	Nominal CCT (K)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
			28	30	30	32	32	34	34	36	65 mA
Luminous Flux (Φ_{v})	90	2700									
		3000									
		3500									
		4000									
		5000									
		5700									
		6500									

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3$
2. Product Code Information

a) Luminous Flux $\operatorname{Bins}\left(\mathrm{IF}_{\mathrm{F}}=\mathbf{6 5} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right.$)

Note:

"•" can be "0" (Whole bin), "3"(MacAdam 3-step ellipse), "K" (K Kitting) or "S" (S Kitting) of the color binning
b) Kitting Rule

1) S Kitting Bin Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same $V F$ rank such as ($A Y+A Y$), ($A Z+A Z$) or ($A 1+A 1$)
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
4. A luminous flux (Im) of kitting bin is combined by a pair of IV rank such as (SE+SE), (SE+SF), (SF+SF), (SF+SG), (SG+SG)
[Kitting example]

[Binning Information]

	Bin \#1	Bin \#2	Remark
VF	AY	AY	
	AZ	AZ	
	A1	A1	
CIE	A	G	
	C	E	
	D	F	
	B	H	
	E	G	
	F	H	
	MacA. 3step(A, B, C, D)	MacA. 3step(A, B, C, D)	
IV	SF	SF	
	SF	SG	
	SG	SG	
	SG	SH	
	SH	SH	
	SH	SJ	
	SJ	SJ	

2) K Kitting Bin Concept

1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage $(V F)$ of kitting bin is combined by a pair of same $V F$ rank such as (AY+AY), (AY+AZ), (AZ+AZ), (AZ+A1) or (A1+A1)
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
4. A luminous flux (lm) of kitting bin is combined by a pair of $I V$ rank such as (SF+SF), (SF+SG), (SG+SG), (SG+SH), (SH+SH)
[Kitting example]

[Binning Information]

	Bin \#1	Bin \#2	Remark
VF	AY	AY	
	AY	AZ	
	AZ	AZ	
	AZ	A1	
	A1	A1	
CIE	H	K	
	F	M	
	E	L	
	G	J	
	E	G	
	F	H	
	MacA. 3step(A, B, C, D)	MacA. 3step(A, B, C, D)	
IV	SF	SF	
	SF	SG	
	SG	SG	
	SG	SH	
	SH	SH	
	SH	SJ	
	SJ	SJ	

c) Color Bins ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

d) Voltage Bins ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CRI (Ra_{a}) Min.	Nominal CCT (K)	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
				AY	$2.6 \sim 2.7$
90	-	-	XA	AZ	$2.7 \sim 2.8$
				A1	$2.8 \sim 2.9$

e) Chromaticity Region \& Coordinates ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

SAMSUNG
f) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

MacAdam Ellipse (V3, V5)					
Step	CIE x	CIE y	θ	a	b
3-step	0.4338	0.4030	53.22	0.0083	0.0041
$5-$-step	0.4338	0.4030	53.22	0.01390	0.006

MacAdam Ellipse (U3, U5)					
Step	CIE x	CIE y	θ	a	b
3-step	0.4073	0.3917	54.00	0.00927	0.00414
5-step	0.4073	0.3917	54.00	0.01545	0.00690

MacAdam Ellipse (T3, T5)					
Step	CIE x	CIE y	θ	a	b
3-step	0.3818	0.3797	53.72	0.00939	0.00402
5-step	0.3818	0.3797	53.72	0.01565	0.0

MacAdam Ellipse (R3,R5)					
Step	CIE x	CIE y	θ	a	b
3-step	0.3447	0.3553	59.62	0.0082	0.0035
5-step	0.3447	0.3553	59.62	0.01370	0.00590

MacAdam Ellipse (Q3, Q5)					
Step	CIE x	CIE y	θ	a	b
3-step	0.3287	0.3417	59.09	0.00746	0.00320
5-step	0.3287	0.3417	59.09	0.01243	0.00533

MacAdam Ellipse (P3, P5)						
Step	CIE x	CIE y	θ	a	b	
3-step	0.3123	0.3282	58.57	0.00669	0.00285	
5-step	0.3123	0.3282	58.57	0.01115	0.00475	

Note:

Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$
3. Typical Characteristics Graphs
a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT : 2700K (90 CRI)

CCT : 3500K (90 CRI)

CCT : 5000K (90 CRI)

CCT : 4000K (90 CRI)

CCT : 5700K (90 CRI)

CCT : 6500K (90 CRI)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

c) Temperature Characteristics ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}$)

d) Color Shift Characteristics, $\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$

e) Derating Curve
f) Beam Angle Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}, \mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}$)

4. Outline Drawing \& Dimension

Measurement unit : mm
Tolerance : $\pm 0.1 \mathrm{~mm}$
[RECOMMENDED PCB SOLDER PAD]

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 200 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-40{ }^{\circ} \mathrm{C} \sim 85{ }^{\circ} \mathrm{C}$, each 10 min , On/Off 5min, Temp. Change Time 20min, DC 200 mA	100 cycles	22
Thermal Cycle	$\begin{gathered} -45^{\circ} \mathrm{C} / 15 \min \leftrightarrow 125^{\circ} \mathrm{C} / 15 \mathrm{~min} \\ \rightarrow \text { Hot plate } 180^{\circ} \mathrm{C} \end{gathered}$	500 cycles	100
High Temperature Storage	$120^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)	$R_{1}: 10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 1.5 \mathrm{k} \Omega$ $\mathrm{C}: 100 \mathrm{pF}$ $\mathrm{V}: \pm 5 \mathrm{kV}$	5 times	30
ESD (MM)	R_{1} : $10 \mathrm{M} \Omega$ R2: 0 C: 200 pF V: $\pm 0.5 \mathrm{kV}$	5 times	30
Vibration Test	$20 \sim 2000 \sim 20 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $\mathrm{X}, \mathrm{Y}, \mathrm{Z} 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$\begin{gathered} 1500 \mathrm{~g}, 0.5 \mathrm{~ms} \\ 3 \text { shocks each } X-Y-Z \text { axis } \end{gathered}$	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition $\left(\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$	Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

SAMSUNG
6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.

7. Tape \& Reel

a) Taping Dimension

b) Reel Dimension
(unit: mm)

Notes:

1) Quantity: The quantity/reel is 4,000 pcs
2) Cumulative Tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion Strength of Cover Tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5)

Bin Code:

(a)(b): Forward Voltage bin (refer to page 3)
(c) (d): Chromaticity bin (refer to page 9-12)
(e)f: Luminous Flux bin (refer to page 4,6)
b) Lot Number

The lot number is composed of the following characters:

c) ${ }_{\text {us }}$ ERI AZRASG

SPMWHD32AMD7XAR0S0 AZRASG 00
II)
(1)(2)(3)(5)(6)7(8)(9/I@(b)C/ $4,000 \mathrm{pcs}$ |||
snmsung
(1)(2)(3)(3)(2)(3)4)(5)(6)(7)(8)(9) $/$ (a)(b)C $/ 4,000 \mathrm{pcs}$
(1)(2) : Production site (GL: Tianjin, China, G4: Guangzhou, China, ET : Hanoi, Vietnam)
※ Sample product (SL: Kiheung, Korea)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (C : 2018, D:2019, E : $2020 \ldots$)
(5) : Month (1~9, A, B, C)
(6) : Day $(1 \sim 9, A, B \sim V)$
(7)(8)(9) : Serial number (001~999)
(a)(b) : Reel number (001 ~ 999)
a) Packing Process (The quantity of PKG on the Reel to be Max 4,000pcs)

Reel

SPMWHD32AMD7XAROS0 AZRASG 00 ||

GLAE94001 / 1001 / 4,000 pcs |||

Snmsung

Outer Box

Material: $\quad \operatorname{Paper}(S W 3 B(B))$

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

SAMSUNG
b) Packing Process for kitting (The quantity of PKG on the Reel to be Max 4,000pcs)

Reel

Kitting ' A '

SPMWHD32AMD7XARSS0 AZRASG 00 ||

GLAE94003 / 1001 / 4,000 pcs |||||||||||||||||||||||||||||||||||||||

Snmsung

Aluminum Vinyl Packing Bag

Kitting ' A '

 AZRDSG

SPMWHD32AMD7XARSS0 AZRASG 00 ||

GLAE94003 / 1001 / 4,000 pcs

SAMISUNG
\qquad

. INIs $_{15}$ Ell AZRFSG

SPMWHD32AMD7XARSS0 AZRFSG 00 |II

GLAE94004 / 1001 / 4,000 pcs ||||||||||||||||||||||||||||||||||||||

SAMSUNG

Kitting 'B'

ch ${ }^{\text {us }}$ EH
 AZRFSG

SPMWHD32AMD7XARSS0 AZRFSG 00 |||

GLAE94004 / 1001 / 4,000 pcs

snmsung
Kitting 'B' (back Side)

- ${ }^{2} \mathrm{~N}_{\mathrm{uS}} \mathrm{EH}$

SPMWHD32AMD7XARSS0
||l|l|
GLAE94003/4,000 pcs QUANITY: 8,000 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

GLAE94004 / 4,000 pcs |IIIIIII|||||||||||||||||||||||||||||||||

SAMSUNG

Outer Box

Kitting ' A '

c) ${ }_{\text {vs }}$ Ef AZRDSG

SPMWHD32AMD7XARSS0 AZRASG 00 ||

GLAE94003 / 1001 / 20,000 pcs

SAMSUNG
[BOX Label]

Kitting 'B'

CㄱNNS
 AZRFSG

SPMWHD32AMD7XARSS0 AZRFSG 00 |||

GLAE4004 / 1001 / 20,000 pcs

SNMSUNG [BOX Label]

Note: " \star " can be Nominal CCT code.

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

c겐 ERI AZRASG

SPMWHD32AMD7XAR0S0 AZRASG 00 III

GLAE94001 / 1001 / 4,000 pcs |||||||||||||||||||||||||||||||||||||||

SAMSUNG
2. Peak package body temperature: 240 t
3. Ater this bag is opened, devices that will be subjected to reflow soldior or other high temperature processes must be:
a. Mounted within 672 hours at factory conditions of equal to ors than $30 \mathrm{C} 760 \%$ RH, or
b. Stored at $<10 \% \mathrm{RH}$
a.Humidity Indicator Card is $>/ 60 \%$ when read at 23 ± 5 c, or b. 2 a is not met.
5. F baking is required, devioss must be baked for $10 \sim 24$ hours at $60 \pm 5 \mathrm{C}$

Note: i device containers cannot be subjected to high temperature or borter bake times are desired, reference IPC/JEDEC J-STD-033 for ake procedure,
Bag seal due date:
(t blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

주의 사형

이 알루미늡 지퍼 맥은 스기 및 정전기로부터 제풍을 로호하 기 위하여 제작되었슈니다. 개앙 후에는 죽시 술더 작업율 실 시하는 겻을 권장합니다.
숚기 및 정전기로푸터 졔폼을 보호 하기 위해서 개봉 훛 사용 하지 않는 자재는 븐 戏엥 낳어 노란 하시기 바랍니다. 사용하 지 않는 자재를 분 巩에 넣율 매는 반드시 둥붕된 드라이 패 파 합껙 넣포 지퍼부룰을 완정하게 밀항하여 주시기 바랍니다.

- Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag
(This image is for reference only. Silica gel and humidity indicator shapes may be different.)

HUMISAFE ${ }^{\text {m }}$
 CHANGE BETWEEN YELLOW AND GREEN

HUMIDITY INDICATOR

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature $0 \sim 40{ }^{\circ} \mathrm{C}$, 0~90 \% RH).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than 30 으 / $60 \% \mathrm{RH}^{* N o t e ~ 1, ~ o r ~}$
b. Mounted within 24 hours (1 day) at an assembly line with a condition of more than $30{ }^{\circ} \mathrm{C} / 70 \% \mathrm{RH}^{* N o t e} 2$, or
c. Stored at $<10 \%$ RH.
*Note 1, 2: IPC/JEDEC J-STD-033A, Recommended Equivalent Total Floor Life Table

Package Type and Body Thickness	Moisture Sensitivity Level	Maximum Percent Relative Humidity						
		40\%	50\%	60\%	70\%	80\%	90\%	
Body Thickness $<2.1 \mathrm{~mm}$	Level 2a	∞	∞	28	1	1	1	$30^{\circ} \mathrm{C}$
		∞	∞	\cdots	2	1	1	$25^{\circ} \mathrm{C}$
		∞	∞	∞	2	2	1	$20^{\circ} \mathrm{C}$

6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
8) Devices must be baked for $10^{\sim} 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (Cl) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd
Samsung inspires the world and shapes the future with transformative ideas and technologies.
The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions. For the latest news, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2018 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct
at time of creation. Samsung is not liable for errors or omissions. All brand, product
service names and logos are trademarks and/or registered trademarks of their
espective owners and are hereby recognized and acknowledged

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

