Middle Power LED Series
5630

LM561B Plus

CRI90

Improved efficacy and performance of LM561B to provide better solution

Features \& Benefits

- 0.3 W class middle power LED
- Mold resin for high reliability
- Standard form factor for design flexibility $(5.6 \times 3.0 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information 5
3. Typical Characteristics Graphs 15
4. Outline Drawing \& Dimension 18
5. Reliability Test Items \& Conditions 19
6. Soldering Conditions 20
7. Tape \& Ree 21
8. Label Structure 23
9. Packing Structure 24
10. Precautions in Handling \& Use 27

1. Characteristics

a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	T_{a}	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+120$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{i}	110	${ }^{\circ} \mathrm{C}$	-
Forward Current	IF	180	mA	-
Peak Pulsed Forward Current	Ifp	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	± 5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Unit	$\begin{gathered} \text { CRI }\left(R_{\mathrm{R}}\right) \\ \text { Min. } \end{gathered}$	Nominal CCT (K)	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (V_{F})	V			WA (WK)	AZ	2.7	-	2.8
					A1	2.8	-	2.9
					A2	2.9	-	3.0
					A3	3.0	-	3.1
					A4	3.1	-	3.2
			2700		S1	24.0	-	26.0
					S2	26.0		28.0
			3000		S1	24.5	-	26.5
					S2	26.5		28.5
			3500		S1	25.0	-	27.0
					S2	27.0	-	29.0
Luminous Flux (Φ_{v})			4000		S1	26.0		28.0
					S2	28.0	-	30.0
	Im	90	5000		SZ	25.0	-	27.0
					S1	27.0	-	29.0
					S2	29.0	-	31.0
			5700		SZ	24.5		26.5
					S1	26.5		28.5
					S2	28.5	-	30.5
			6500		SZ	24.0		26.0
					S1	26.0		28.0
					S2	28.0		30.0
Reverse Voltage (@ 5 mA)	V					0.7	-	1.2
Color Rendering Index $\left(\mathrm{R}_{\mathrm{a}}\right)$	-					90	-	-
Special CRI (R9)	-					50	-	-
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$					-	15	-
Beam Angle	-					-	120	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3, R 9= \pm 6.5$

2. Product Code Information

a) Luminous Flux $\operatorname{Bins}\left(I_{F}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$

Note:

" ${ }^{*}$ " can be "A" $2,500 \mathrm{pcs}$) or "K" (10,000pcs) of reel taping
"为" can be "0" (Whole bin), "M" (Quarter bin), "N"(N Kitting) or "K" (K Kitting) of the color binning
b) Kitting rule

1) K Kitting bin Concept

1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same VF rank such as (A1+A1), (A2+A2), (A3+A3), (A4+A4) or (AZ+AZ).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
4. A luminous flux (lm) of kitting bin is combined by a pair of same IV rank such as (SZ+SZ), (S1+S1) or (S2+S2)
[Kitting example ; Warm white]
(2700K, 3000K, 3500K, 4000K)

[Kitting example ; Cool white]
(5000K, 5700K, 6500K)

[Binning Information]

	Warm white		Cool white	
	Bin \#1	Bin \#2	Bin \#1	Bin \#2
VF	AZ	AZ	AZ	AZ
	A1	A1	A1	A1
	A2	A2	A2	A2
	A3	A3	A3	A3
	A4	A4	A4	A4
CIE	W (1, 2, 5 bin)	Z (C, F, G bin)	W (1,P, Q bin)	Z (8, B, C bin)
	V (6, 7, A, B bin)	V (6, 7, A, B bin)	$\mathrm{V}(2,3,6,7 \mathrm{bin})$	$\mathrm{V}(2,3,6,7 \mathrm{bin})$
	$\mathrm{X}(3,4,8 \mathrm{bin})$	Y (9, D, E bin)	X (4, R, S bin)	$\mathrm{Y}(5,9, \mathrm{~A}$ bin $)$
IV	-	-	SZ	SZ
	S1	S1	S1	S1
	S2	S2	S2	S2

b) Kitting rule

2) N Kitting bin Concept

1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im),
2. A forward voltage (VF) of kitting bin is combined by a pair of same $V F$ rank such as (A1+A1), (A2+A2), (A3+A3), (A4+A4) or (AZ+AZ).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example ; Warm white]
(2700K, 3000K, 3500K, 4000K)

[Kitting example ; Cool white]

(5000K, 5700K, 6500K)

[Binning Information]

	Warm white		Cool white	
	Bin \#1	Bin \#2	Bin \#1	Bin \#2
VF	AZ	AZ	AZ	AZ
	A1	A1	A1	A1
	A2	A2	A2	A2
	A3	A3	A3	A3
	A4	A4	A4	A4
CIE	6	B	2	7
	7	A	3	6
IV	-	-	SZ	SZ
	S1	S1	S1	S1
	S2	S2	S2	S2

c) Color Bins ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

$\begin{aligned} & \text { CRI (} \left.R_{\mathrm{a}}\right) \\ & \mathrm{Min} . \end{aligned}$	Nominal CCT (K)	Product Code	Color Rank	Chromaticity Bins
	2700	SPMWHT541MP7W WOSO	W0 (Whole bin)	W1, W2, W3, W4, W5, W6, W7, W8, W9, WA, WB, WC, WD, WE, WF, WG
		SPMWHT541MP7W WMS0	WM (Quarter bin)	W6, W7, WA, WB
		SPMWHT541MP7W WKS0	WK (K Kitting)	WV, WW, WX, WY, WZ
		SPMWHT541MP7W WNS0	WN (Quarter cross kitting)	W6, W7, WA, WB
	3000	SPMWHT541MP7W V0S0	V0 (Whole bin)	V1, V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC, VD, VE, VF, VG
		SPMWHT541MP7W VMS0	VM (Quarter bin)	V6, V7, VA, VB
		SPMWHT541MP7W VKS0	VK (K Kitting)	VV, VW, VX, VY, VZ
		SPMWHT541MP7W VNS0	VN (Quarter cross kitting)	V6, V7, VA, VB
90	3500	SPMWHT541MP7W U0S0	U0 (Whole bin)	U1, U2, U3, U4, U5, U6, U7, U8, U9, UA, UB, UC, UD, UE, UF, UG
		SPMWHT541MP7W UMS0	UM (Quarter bin)	U6, U7, UA, UB
		SPMWHT541MP7W UKS0	UK (K Kitting)	UV, UW, UX, UY, UZ
		SPMWHT541MP7W UNS0	UN (Quarter cross kitting)	U6, U7, UA, UB
	4000	SPMWHT541MP7W TOS0	T0 (Whole bin)	T1, T2, T3, T4, T5, T6, T7, T8, T9, TA, TB, TC, TD, TE, TF, TG
		SPMWHT541MP7W TMS0	TM (Quarter bin)	T6, T7, TA, TB
		SPMWHT541MP7W TKS0	TK (K Kittina)	TV, TW, TX, TY, TZ
		SPMWHT541MP7W TNS0	TN (Quarter cross kitting bin)	T6, T7, TA, TB
	5000	SPMWHT541MP7W R0S0	R0 (Whole bin)	R1, R2, R3, R4, R5, R6, R7, R8, R9, RA, RB, RC, RP, RQ, RR, RS
		SPMWHT541MP7W RMS0	RM (Quarter bin)	R2, R3, R6, R7
		SPMWHT541MP7W RKS0	RK (K Kitting)	RV, RW, RX, RY, RZ
		SPMWHT541MP7W RNS0	RN (N Kitting)	R2, R3, R6, R7
	5700	SPMWHT541MP7W Q0S0	Q0 (Whole bin)	Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA, QB, QC, QP, QQ, QR, QS
		SPMWHT541MP7W QMS0	QM (Quarter bin)	Q2, Q3, Q6, Q7
		SPMWHT541MP7W QKS0	QK (K Kitting)	QV, QW, QX, QY, QZ
		SPMWHT541MP7W QNS0	QN (N Kitting)	Q2, Q3, Q6, Q7
	6500	SPMWHT541MP7W P0S0	P0 (Whole bin)	P1, P2, P3, P4, P5, P6, P7, P8, P9, PA, PB, PC, PP, PQ, PR, PS

SIMSUNA

SPMWHT541MP7W PMS0	PM (Quarter bin)	P2, P3, P6, P7
SPMWHT541MP7W PKS0	PK (K Kitting)	PV, PW, PX, PY, PZ
SPMWHT541MP7W PNS0	PN (N Kitting)	P2, P3, P6, P7

Note: " ${ }^{*}$ " can be "A" (2,500pcs) or "K" (10,000pcs) of reel taping
d) Voltage Bins ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

$\operatorname{CRI}\left(R_{\mathrm{a}}\right)$ Min.	$\underset{(\mathrm{K})}{\text { Nominal CCT }}$	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
-				AZ	$2.7 \sim 2.8$
				A1	$2.8 \sim 2.9$
	-	-	WA (WK)	A2	2.9 ~ 3.0
				A3	$3.0 \sim 3.1$
				A4	3.1 ~ 3.2

e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

SHMSUNG
e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Region	CIE x	CIEy	Region	CIE x	CIEy	Region	CIEx	CIEy	Region	CIE x	CIEy
W rank (2700 K)						V rank (3000 K)					
W1	0.4373	0.3893	W9	0.4465	0.4071	V1	0.4147	0.3814	V9	0.4221	0.3984
	0.4418	0.3981		0.4513	0.4164		0.4183	0.3898		0.4259	0.4073
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
	0.4428	0.3906		0.4523	0.4085		0.4203	0.3833		0.4281	0.4006
W2	0.4428	0.3906	WA	0.4523	0.4085	V2	0.4203	0.3833	VA	0.4281	0.4006
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
	0.4483	0.3919		0.4582	0.4099		0.4259	0.3853		0.4342	0.4028
W3	0.4483	0.3919	WB	0.4582	0.4099	V3	0.4259	0.3853	VB	0.4342	0.4028
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
	0.4538	0.3931		0.4641	0.4112		0.4316	0.3873		0.4403	0.4049
W4	0.4538	0.3931	WC	0.4641	0.4112	V4	0.4316	0.3873	VC	0.4403	0.4049
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
	0.4646	0.4034		0.4756	0.4221		0.4418	0.3981		0.4513	0.4164
	0.4593	0.3944		0.4700	0.4126		0.4373	0.3893		0.4465	0.4071
W5	0.4418	0.3981	WD	0.4513	0.4164	V5	0.4183	0.3898	VD	0.4259	0.4073
	0.4465	0.4071		0.4562	0.4260		0.4221	0.3984		0.4299	0.4165
	0.4523	0.4085		0.4624	0.4274		0.4281	0.4006		0.4364	0.4188
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
W6	0.4475	0.3994	WE	0.4573	0.4178	V6	0.4242	0.3919	VE	0.4322	0.4096
	0.4523	0.4085		0.4624	0.4274		0.4281	0.4006		0.4364	0.4188
	0.4582	0.4099		0.4687	0.4289		0.4342	0.4028		0.4430	0.4212
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
W7	0.4532	0.4008	WF	0.4634	0.4193	V7	0.4300	0.3939	VF	0.4385	0.4119
	0.4582	0.4099		0.4687	0.4289		0.4342	0.4028		0.4430	0.4212
	0.4641	0.4112		0.4750	0.4304		0.4403	0.4049		0.4496	0.4236
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
W8	0.4589	0.4021	WG	0.4695	0.4207	V8	0.4359	0.3960	VG	0.4449	0.4141
	0.4641	0.4112		0.4750	0.4304		0.4403	0.4049		0.4496	0.4236
	0.4700	0.4126		0.4813	0.4319		0.4465	0.4071		0.4562	0.4260
	0.4646	0.4034		0.4756	0.4221		0.4418	0.3981		0.4513	0.4164

SIMSUNG
e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIEy	Region	CIE x	CIEy
		U rank	(3500 K)					T rank	(4000 K)		
U1	0.3889	0.3690	U9	0.3941	0.3848	T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3915	0.3768		0.3968	0.3930		0.3726	0.3612		0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3744	0.3685		0.3782	0.3837
	0.3953	0.3720		0.4010	0.3882		0.3686	0.3649		0.3719	0.3797
U2	0.3953	0.3720	UA	0.4010	0.3882	T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3783	0.3646		0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3804	0.3721		0.3847	0.3877
	0.4017	0.3751		0.4080	0.3916		0.3744	0.3685		0.3782	0.3837
U3	0.4017	0.3751	UB	0.4080	0.3916	T3	0.3783	0.3646	TB	0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3840	0.3681		0.3887	0.3836
	0.4116	0.3865		0.4186	0.4037		0.3863	0.3758		0.3912	0.3917
	0.4082	0.3782		0.4150	0.3950		0.3804	0.3721		0.3847	0.3877
U4	0.4082	0.3782	UC	0.4150	0.3950	T4	0.3840	0.3681	TC	0.3887	0.3837
	0.4116	0.3865		0.4186	0.4037		0.3898	0.3716		0.3950	0.3875
	0.4183	0.3898		0.4259	0.4073		0.3924	0.3794		0.3978	0.3958
	0.4147	0.3814		0.4221	0.3984		0.3863	0.3758		0.3912	0.3917
U5	0.3915	0.3768	UD	0.3968	0.3930	T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3941	0.3848		0.3996	0.4015		0.3744	0.3685		0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3763	0.3760		0.3802	0.3916
	0.3981	0.3800		0.4040	0.3966		0.3702	0.3722		0.3736	0.3874
U6	0.3981	0.3800	UE	0.4040	0.3966	T6	0.3744	0.3685	TE	0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3804	0.3721		0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3825	0.3798		0.3869	0.3958
	0.4048	0.3832		0.4113	0.4001		0.3763	0.376		0.3802	0.3916
U7	0.4048	0.3832	UF	0.4113	0.4001	T7	0.3804	0.3721	TF	0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3863	0.3758		0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3887	0.3836		0.3937	0.4001
	0.4116	0.3865		0.4186	0.4037		0.3825	0.3798		0.3869	0.3958
U8	0.4116	0.3865	UG	0.4186	0.4037	T8	0.3863	0.3758	TG	0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3924	0.3794		0.3978	0.3958
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4183	0.3898		0.4259	0.4073		0.3887	0.3836		0.3937	0.4001

SIMSUNG
e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y									
		R rank	(5000 K)			Q rank (5700 K)					
R1	0.3366	0.3369	R9	0.3374	0.3554	Q1	0.3218	0.3298	Q9	0.3211	0.3407
	0.3369	0.3431		0.3371	0.3493		0.3222	0.3243		0.3215	0.3353
	0.3407	0.3460		0.3411	0.3522		0.3258	0.3275		0.3254	0.3388
	0.3403	0.3398		0.3415	0.3587		0.3256	0.3331		0.3252	0.3444
R2	0.3403	0.3398	RA	0.3415	0.3587	Q2	0.3256	0.3331	QA	0.3252	0.3444
	0.3407	0.3460		0.3411	0.3522		0.3258	0.3275		0.3254	0.3388
	0.3446	0.3491		0.3451	0.3554		0.3294	0.3306		0.3293	0.3423
	0.3440	0.3427		0.3457	0.3621		0.3294	0.3364		0.3293	0.3481
R3	0.3446	0.3491	RB	0.3451	0.3554	Q3	0.3294	0.3364	QB	0.3293	0.3481
	0.3440	0.3427		0.3457	0.3621		0.3294	0.3306		0.3293	0.3423
	0.3477	0.3458		0.3500	0.3655		0.3330	0.3338		0.3332	0.3458
	0.3485	0.3522		0.3492	0.3587		0.3331	0.3398		0.3333	0.3518
R4	0.3485	0.3522	RC	0.3492	0.3587	Q4	0.3331	0.3398	QC	0.3333	0.3518
	0.3477	0.3458		0.3500	0.3655		0.3330	0.3338		0.3332	0.3458
	0.3514	0.3487		0.3542	0.3690		0.3366	0.3369		0.3371	0.3493
	0.3524	0.3554		0.3533	0.3620		0.3369	0.3431		0.3374	0.3554
R5	0.3371	0.3493	RP	0.3366	0.3369	Q5	0.3215	0.3353	QP	0.3222	0.3243
	0.3369	0.3431		0.3364	0.3292		0.3218	0.3298		0.3227	0.3180
	0.3407	0.3460		0.3400	0.3320		0.3256	0.3331		0.3260	0.3208
	0.3411	0.3522		0.3403	0.3398		0.3254	0.3388		0.3258	0.3275
R6	0.3407	0.3460	RQ	0.3403	0.3398	Q6	0.3254	0.3388	QQ	0.3258	0.3275
	0.3411	0.3522		0.3400	0.3320		0.3256	0.3331		0.3260	0.3208
	0.3451	0.3554		0.3434	0.3344		0.3294	0.3364		0.3294	0.3235
	0.3446	0.3491		0.3440	0.3427		0.3293	0.3423		0.3294	0.3306
R7	0.3446	0.3491	RR	0.3440	0.3427	Q7	0.3293	0.3423	QR	0.3294	0.3306
	0.3451	0.3554		0.3434	0.3344		0.3294	0.3364		0.3294	0.3235
	0.3492	0.3587		0.3468	0.3372		0.3331	0.3398		0.3330	0.3266
	0.3485	0.3522		0.3477	0.3458		0.3332	0.3458		0.3330	0.3338
R8	0.3485	0.3522	RS	0.3477	0.3458	Q8	0.3332	0.3458	QS	0.3330	0.3338
	0.3492	0.3587		0.3468	0.3372		0.3331	0.3398		0.3330	0.3266
	0.3533	0.3620		0.3504	0.3398		0.3369	0.3431		0.3364	0.3292
	0.3524	0.3554		0.3514	0.3487		0.3371	0.3493		0.3366	0.3369

SIMSUNG
e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
P rank (6500 K)					
PP	0.3079	0.3060	P5	0.3058	0.316
	0.3115	0.3098		0.3098	0.3199
	0.3106	0.3150		0.3089	0.3249
	0.3068	0.3113		0.3048	0.3207
PQ	0.3115	0.3098	P6	0.3098	0.3199
	0.3152	0.3133		0.3137	0.3238
	0.3144	0.3186		0.313	0.329
	0.3106	0.3150		0.3089	0.3249
PR	0.3152	0.3133	P7	0.3137	0.3238
	0.3190	0.3170		0.3177	0.3278
	0.3183	0.3224		0.3172	0.3332
	0.3144	0.3186		0.313	0.329
PS	0.3190	0.3170	P8	0.3177	0.3278
	0.3225	0.3200		0.3217	0.3317
	0.3221	0.3261		0.3213	0.3373
	0.3183	0.3224		0.3172	0.3332
P1	0.3068	0.3113	P9	0.3048	0.3207
	0.3106	0.315		0.3089	0.3249
	0.3098	0.3199		0.308	0.3298
	0.3058	0.316		0.3038	0.3256
P2	0.3106	0.315	PA	0.3089	0.3249
	0.3144	0.3186		0.313	0.329
	0.3137	0.3238		0.3123	0.3341
	0.3098	0.3199		0.308	0.3298
P3	0.3144	0.3186	PB	0.313	0.329
	0.3183	0.3224		0.3172	0.3332
	0.3177	0.3278		0.3166	0.3384
	0.3137	0.3238		0.3123	0.3341
P4	0.3183	0.3224	PC	0.3172	0.3332
	0.3221	0.3261		0.3213	0.3373
	0.3217	0.3317		0.3209	0.3427
	0.3177	0.3278		0.3166	0.3384

Note: Samsung maintains measurement tolerance of : Cx, Сy = ± 0.005
f) Kitting Chromaticity Region \& Coordinates ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

f) Kitting Chromaticity Region \& Coordinates ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Region	CIE x	CIE y									
		W rank	(2700 K)					V rank	(3000 K)		
WV	0.4475	0.3994				VV	0.4242	0.3919			
	0.4589	0.4021					0.4359	0.3960			
	0.4695	0.4207					0.4449	0.4141			
	0.4573	0.4178					0.4322	0.4096			
WW	0.4373	0.3893	WY	0.4465	0.4071	VW	0.4147	0.3814	VY	0.4221	0.3984
	0.4483	0.3919		0.4523	0.4085		0.4259	0.3853		0.4281	0.4006
	0.4532	0.4008		0.4573	0.4178		0.4300	0.3939		0.4322	0.4096
	0.4475	0.3994		0.4634	0.4193		0.4242	0.3919		0.4385	0.4119
	0.4523	0.4085		0.4687	0.4289		0.4281	0.4006		0.4430	0.4212
	0.4465	0.4071		0.4562	0.4260		0.4221	0.3984		0.4299	0.4165
WX	0.4483	0.3919	WZ	0.4641	0.4112	VX	0.4259	0.3853	VZ	0.4403	0.4049
	0.4593	0.3944		0.4700	0.4126		0.4373	0.3893		0.4465	0.4071
	0.4700	0.4126		0.4813	0.4319		0.4465	0.4071		0.4562	0.4260
	0.4641	0.4112		0.4687	0.4289		0.4403	0.4049		0.4430	0.4212
	0.4589	0.4021		0.4634	0.4193		0.4359	0.3960		0.4385	0.4119
	0.4532	0.4008		0.4695	0.4207		0.4300	0.3939		0.4449	0.4141

SIMSUNG
f) Kitting Chromaticity Region \& Coordinates

Region	CIEx	CIEy	Region	CIE x	CIEy
		U rank	(3500 K)		
UV	0.3981	0.3800			
	0.4116	0.3865			
	0.4186	0.4037			
	0.4040	0.3966			
UW	0.3889	0.3690	UY	0.3941	0.3848
	0.4017	0.3751		0.4010	0.3882
	0.4048	0.3832		0.4040	0.3966
	0.3981	0.3800		0.4113	0.4001
	0.4010	0.3882		0.4146	0.4089
	0.3941	0.3848		0.3996	0.4015
UX	0.4017	0.3751	UZ	0.4150	0.3950
	0.4147	0.3814		0.4221	0.3984
	0.4221	0.3984		0.4299	0.4165
	0.4150	0.3950		0.4146	0.4089
	0.4116	0.3865		0.4113	0.4001
	0.4048	0.3832		0.4186	0.4037

Region	CIE x	CIEy	Region	CIEx	CIEy
		T rank	(4000 K)		
TV	0.3744	0.3685			
	0.3863	0.3758			
	0.3912	0.3917			
	0.3782	0.3837			
TW	0.3670	0.3578	TY	0.3702	0.3722
	0.3783	0.3646		0.3763	0.3760
	0.3804	0.3721		0.3782	0.3837
	0.3744	0.3685		0.3847	0.3877
	0.3763	0.3760		0.3869	0.3958
	0.3702	0.3722		0.3736	0.3874
TX	0.3783	0.3646	TZ	0.3887	0.3837
	0.3898	0.3716		0.3950	0.3875
	0.3950	0.3875		0.4006	0.4044
	0.3887	0.3837		0.3869	0.3958
	0.3863	0.3758		0.3847	0.3877
	0.3804	0.3721		0.3912	0.3917

f) Kitting Chromaticity Region \& Coordinates

Region	CIEx	CIEy	Region	CIE x	CIEy
		R rank	(5000 K)		
RV	0.3403	0.3398			
	0.3477	0.3458			
	0.3492	0.3587			
	0.3411	0.3522			
RW	0.3364	0.3292	RY	0.3369	0.3431
	0.3434	0.3344		0.3407	0.346
	0.344	0.3427		0.3411	0.3522
	0.3403	0.3398		0.3451	0.3554
	0.3407	0.346		0.3457	0.3621
	0.3369	0.3431		0.3374	0.3553
RX	0.3434	0.3344	RZ	0.3485	0.3522
	0.3504	0.3398		0.3524	0.3554
	0.3524	0.3554		0.3542	0.369
	0.3485	0.3522		0.3457	0.3621
	0.3477	0.3458		0.3451	0.3554
	0.344	0.3427		0.3492	0.3587

Region	CIEx	CIEy	Region	CIEx	CIEy
		Q rank	(5700 K)		
QV	0.3258	0.3275			
	0.333	0.3338			
	0.3332	0.3458			
	0.3254	0.3388			
QW	0.3227	0.318	QY	0.3218	0.3298
	0.3294	0.3235		0.3256	0.3331
	0.3294	0.3306		0.3254	0.3388
	0.3258	0.3275		0.3293	0.3423
	0.3256	0.3331		0.3293	0.3481
	0.3218	0.3298		0.3211	0.3407
QX	0.3294	0.3235	QZ	0.3293	0.3423
	0.3364	0.3292		0.3332	0.3458
	0.3369	0.3431		0.3331	0.3398
	0.3331	0.3398		0.3369	0.3431
	0.333	0.3338		0.3374	0.3554
	0.3294	0.3306		0.3293	0.3481

f) Kitting Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
P rank (6500 K)					
PV	0.3106	0.315			
	0.3183	0.3224			
	0.3172	0.3332			
	0.3089	0.3249			
PW	0.3079	0.306	PY	0.3058	0.316
	0.3152	0.3133		0.3098	0.3199
	0.3144	0.3186		0.3089	0.3249
	0.3106	0.3150		0.313	0.329
	0.3098	0.3199		0.3123	0.3341
	0.3058	0.3160		0.3038	0.3256
PX	0.3152	0.3133	PZ	0.313	0.329
	0.3225	0.32		0.3172	0.3332
	0.3217	0.3317		0.3177	0.3278
	0.3177	0.3278		0.3217	0.3317
	0.3183	0.3224		0.3209	0.3427
	0.3144	0.3186		0.3123	0.3341

Note:
Samsung maintains measurement tolerance of: $C x, C y= \pm 0.005$

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT: 2700 K (90 CRI)

CCT: 3500 K (90 CRI)

CCT: 5000 K (90 CRI)

CCT: 3000 K (90 CRI)

CCT: 4000 K (90 CRI)

CCT: 5700 K (90 CRI)

CCT: 6500 K (90 CRI

b) Forward Current Characteristics $\left(\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$

c) Temperature Characteristics ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$)

Relative Forward Voltage vs. Temperature

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.
5. Reliability Test Items \& Conditions
a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} / 20 \mathrm{~min} \leftrightarrow 85^{\circ} \mathrm{C} / 20 \mathrm{~min}$, sweep 100 min cycle on/off: each 5 min, DC 180 mA	100 cycles	22
Thermal Cycle	$\begin{gathered} -45^{\circ} \mathrm{C} / 15 \min \leftrightarrow 125^{\circ} \mathrm{C} / 15 \mathrm{~min} \\ \rightarrow \text { Hot plate } 180^{\circ} \mathrm{C} \end{gathered}$	500 cycles	100
High Temperature Storage	$120^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)		5 times	30
ESD (MM)	$R_{1}: 10 \mathrm{M} \Omega$ R_{2} : 0 C: 200 pF V: $\pm 0.5 \mathrm{kV}$	5 times	30
Vibration Test	$20 \sim 2000 \sim 20 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min X, Y, Z 3 direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ 3 shocks each $X-Y-Z$ axis	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition$\left(T_{s}=25^{\circ} \mathrm{C}\right)$	Limit	
			Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

Taping Direction

b-1) Reel Dimension (Max 2,500 pcs)

b-2) Reel Dimension (Max 10,000 pcs)

Symbol	A	B	C	W1	W2
Spec (mm)	$\varnothing 330 \pm 1$	80 ± 1	13 ± 0.5	13 ± 0.3	17.5 ± 1

Notes:

1) Quantity: The quantity/reel is 2,500 or 10,000 pcs
2) Cumulative Tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion Strength of Cover Tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5)

Bin Code:

(a)(b): Forward Voltage bin (refer to page 10)
(c)(d): Chromaticity bin (refer to page 9)
(e) \dagger): Luminous Flux bin (refer to page 6)
b) Lot Number

The lot number is composed of the following characters:

A1W6S1

SPMWHT541MP7WAWNS0 A1W6S1 01 ||I||
(1)(2)(3)(4)(5)(6)(8)(8)/1 (b)(b) $2,500 \mathrm{pcs}$

II
and suy
(1)(2)(3)(4)(5)(6)(7)(8) $/ 1$ (a)(b)(c) $/ 2,500 \mathrm{pcs}$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : L (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B: 2017...)
(5) : Month (1~9, A, B, C)
(6)(7)(8)(9) : Day $(1 \sim 9, A, B \sim V)$
(a)(b) : Product serial number (001 ~ 999)

9. Packing Structure

a-1) Packing Process (The quantity of PKG on the Reel to be Max 2,500pcs)

SAMSUNA

Reel

. ${ }^{2} \mathrm{~N}_{\text {vs }}$
 A1R1S1

SPMWHT541MP7WKROS0 A1R1S1 01 II GLAZC4001 / 1001 / 10,000 pcs III

```
amyy\
```


b) Packing Process for kitting (The quantity of PKG on the Reel to be Max 2,500pcs)

Reel

Kitting ' A '

${ }^{-74}{ }^{0}$ SPMWHT541MP7WA \diamond KS0 A1 \diamond WS1 01 || GLAW94001 / 1001 / 2,500 pcs |||||||||||||||||||||||||||||||||||||||

Kitting ' B '

c $\left.{ }^{2}\right)_{\text {us }}$

A1 \vee ZS1
SPMWHT541MP7WA \diamond KSO A1 \diamond ZS1 01
||| GLAW94001 / 1001 / 2,500 pcs |||||||||||||||||||||||||||||||||||||||

Kitting ' A '

Aluminum Vinyl Packing Bag

Kitting ' A '

${ }_{c} \mathrm{NH}_{\text {us }} \quad \mathrm{A} 1 \diamond$ WS1
SPMWHT541MP7WA \diamond KSO A1 \diamond WS1 01
 GLAW94001 / 1001 / 2,500 pcs ||

Kitting ' B '

वTV \quad A1 \diamond ZS1

SPMWHT541MP7WA $\triangleleft K$ K 0 A1 $\diamond Z S 1 \quad 01$
 GLAW94001 / 1001 / 2,500 pcs

Kitting ' A '

${ }^{\square} \mathrm{N}_{\mathrm{us}} \quad \mathrm{A} 1 \diamond \mathrm{WS} 1$
SPMWHT541MP7WA \diamond KSO A1 \diamond WS1 01

GLAW94001 / 1001 / 2,500 pcs

[BOX Label]

Kitting ' B '

${ }_{c} \mathrm{TN}_{\mathrm{us}} \quad \mathrm{A} 1 \diamond$ ZS1
SPMWHT541MP7WA \diamond KSO A1 $\diamond Z S 1 \quad 01$

GLAW94001 / 1001 / 2,500 pcs
|||||||||||||||||||||||||||||||||||||||
[BOX Label]

Note: " \diamond " can be Nominal CCT code.

Outer Box

Material: \quad Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

shmsung
c) Aluminum Vinyl Packing Bag
This bag contains

MOISTURE SENSITIVE DEVICES

1. Sher Ife in seabed bag: 12 months at $<40 \mathrm{c}$ and $<90 \%$
relative humidity (RH)
2. Peak pockage body temperature: 240 t

3. Ater this bag is opened, devices that will be subjocted to reflow soldior or other high temperature processes must be:
a. Mounted within 672 hours at factory conditions of equal to or less than 30 C $/ 60 \% \mathrm{RH}$, or
b. Stored at $<10 \%$ RH
4. Devices require bake, before mounting, if:
a. Humidity Indicator Card is $>60 \%$ when read at 23 ± 5 c, or
b. 2 a is not met.
5. If baking is required, devioes must be baked for $10 \sim 24$ hours at $60 \pm 5{ }^{\circ} \mathrm{C}$

Note: f device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure,
Bag seal due date: \qquad
(I blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

주의 사항

이 알루미늡 지펴 맥은 슴기 및 정전기로부터 제풍을 보호하 기 위하여 제작되었슴니다. 개봉 후에는 족시 솔더 작업울 실 시하는 것을 권장합니다.
슥기 및 정전기로푸터 제품을 보호 하기 위혜서 개붕 후 사용 하지 않는 자재는 븐 퍄에 넣어 노련 하시기 바랍니다. 사용하 지 않는 자재를 븐 팩에 넣을 매는 반드시 동붕된 드라이 패 과 항께 넣고 지퍼부룬을 완정하게 밀황하여 주시기 바랍니다.

- Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
d) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature $0 \sim 40^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}$).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung Electronics Co., Ltd. is a global leader in technology, opening new possibilities
for people everywhere. Through relentless
innovation and discovery, we are transforming the worlds of
TVs, smartphones, tablets, PCs, cameras, home appliances, printers,
LTE systems, medical devices, semiconductors and LED solutions.
We employ 286,000 people across 80 countries with annual sales of
US\$216.7 billion. To discover more, please visit www.samsungled.com.

Copyright © 2015 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct
at time of creation. Samsung is not liable for errors or omissions. All brand, product,
service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

