

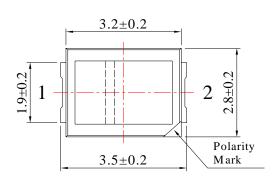
0.80mm Height PLCC-2 Package Top View 0.2W High Power Pure Green LED Technical Data Sheet

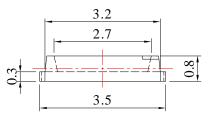
Part No.: R2835PGC-G5M-M40

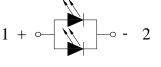
Features:

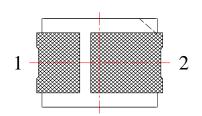
- \diamond White SMT package.
- \diamond Wide viewing angle.
- \diamond Lead frame package with individual 2 pins.
- $\diamond~$ Compatible with automatic placement equipment.
- $\diamond~$ Compatible with infrared and vapor phase reflow solder process.
- $\diamond~$ The product itself will remain within RoHS compliant Version.

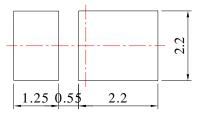
Descriptions:


- The R2835 SMD LED is much smaller than lead frame type components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.
- $\diamond~$ Due to the package design, the R2810 SMD LED has wide viewing angle, low power consumption.
- ♦ Besides, lightweight makes them ideal for miniature applications, etc.


Applications:


- $\diamond~$ Automotive: Backlighting in dashboard and switch.
- $\diamond~$ Telecommunication: Indicator and backlighting in telephone and fax.
- $\diamond~$ Flat backlight for LCD, switch and symbol.
- \diamond Indoor signboard use.
- \diamond LCD Back Light.
- \diamond Indicators.
- \diamond Illuminations.
- \diamond Mobile phones.
- \diamond General use.


Package Dimension:



Polarity

Recommended Soldering Pad Dimensions

Unit: mm Tolerance: ±0.10mm

Part No.	Chip Material	Lens Color	Source Color
R2835PGC-G5M-M40	InGaN	Water Clear	Pure Green

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.10mm (.004") unless otherwise specified.
- 3. Specifications are subject to change without notice.

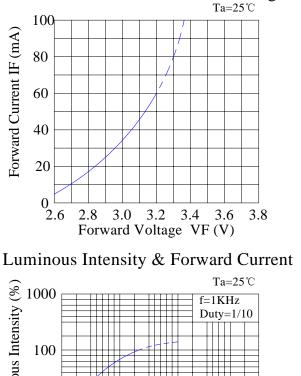
Absolute Maximum Ratings at Ta=25 $^\circ\!\!\!\mathrm{C}$

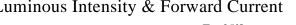
Parameters	Symbol	Max.	Unit
Power Dissipation	PD	0.2	W
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	100	mA
Continuous Forward Current	IF	60	mA
Reverse Voltage	VR	5 V	
Electrostatic Discharge (HBM)	ESD	400 V	
Operating Temperature Range	Topr	-40℃ to +80℃	
Storage Temperature Range	Tstg	-40℃ to +85℃	
Soldering Temperature	Tsld	260℃ for 5 Seconds	

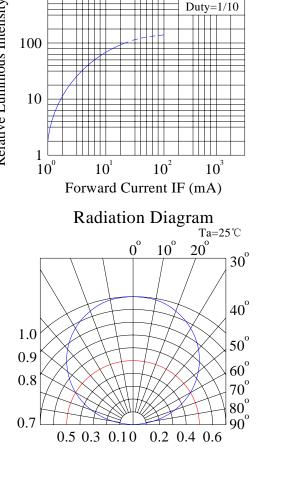
Electrical Optical Characteristics at $Ta=25^{\circ}C$

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	IV	4000	5100		mcd	IF=60mA (Note 1)
Luminous Flux *	Φν	14	17		lm	IF=60mA (Note 1)
Viewing Angle *	20 _{1/2}		120		Deg	IF=60mA (Note 2)
Peak Emission Wavelength	λр		520		nm	IF=60mA
Dominant Wavelength	λd		525		nm	IF=60mA (Note 3)
Spectral Line Half-Width	Δλ		35		nm	I _F =60mA
Forward Voltage	VF	2.80	3.20	3.80	V	IF=60mA

Notes:


1. Luminous Intensity Measurement allowance is \pm 10%.


2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.


3. It use many parameters that correspond to the CIE 1931 2°. X, Y, and Z are CIE 1931 2° values of Red, Green and Blue content of the measurement.

Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted) Forward Current & Forward Voltage Spectrum Distribution Ta=25℃ 100 100 Relative Luminous Intensity (%) Forward Current IF (mA) 80 75 60 50 40 25 20 0 0 2.6 500 600 700 800 300 400 2.8 Wavelength λ p (nm) Luminous Intensity & Ambient Temperature Relative Luminous Intensity (%) Relative Luminous Intensity (% 1000 1000 100 100 10 10 1 1 10° 10^{1} -60 -40 -20 0 20 40 60 80 100 Ambient Temperature Ta (℃) Forward Current Derating Curve 100 Forward Current IF (mA) 80 60 1.0 40 0.9 0.8 20 0 0.7 0 20 40 60 80 100 Ambient Temperature Ta (°C)

Date: Jul./10/2012 Page: 5 OF 9 Drawn: Zhang http://www.luckylightled.com

Reliability Test Items And Conditions:

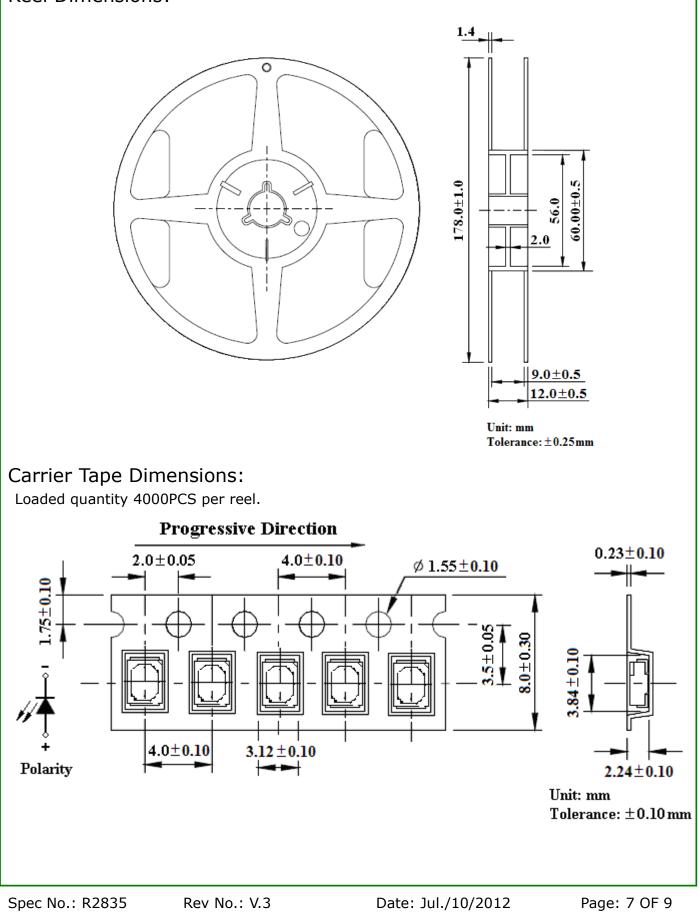
The reliability of products shall be satisfied with items listed below:

Confidence level: 90%.

LTPD: 10%.

1) Test Items and Results:

No.	Test Item	Test Hours/Cycles	Test Conditions	Sample Size	Ac/Re
1	Resistance to Soldering Heat	6 Min	Tsld=260±5℃, Min. 5sec	25pcs	0/1
2	Thermal Shock	300 Cycles	H: +100℃ 5min ∫ 10 sec L: -10℃ 5min	25pcs	0/1
3	Temperature Cycle	300 Cycles	H: +100℃ 15min ∫ 5min L: -40℃ 15min	25pcs	0/1
4	High Temperature Storage	1000Hrs.	Temp: 100 ℃	25pcs	0/1
5	DC Operating Life	1000Hrs.	IF=60mA	25pcs	0/1
6	Low Temperature Storage	1000Hrs.	Temp: -40 ℃	25pcs	0/1
7	High Temperature/ High Humidity	1000Hrs.	85℃/85%RH	25pcs	0/1


2) Criteria for Judging the Damage:

Item	Symbol	Test Conditions	Criteria for Judgment	
Item	Symbol		Min	Max
Forward Voltage	VF	IF=60mA		F.V.*)×1.1
Reverse Current	IR	VR=5V		F.V.*)×2.0
Luminous Intensity	IV	IF=60mA	F.V.*)×0.7	

*) F.V.: First Value.

Reel Dimensions:

Approved: Liu Checked: Pan Lucky Light Electronics Co., Ltd. Date: Jul./10/2012 Page: 7 OF 9 Drawn: Zhang http://www.luckylightled.com

Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

2.1 Do not open moisture proof bag before the products are ready to use.

2.2 Before opening the package, the LEDs should be kept at $30\,^\circ\!\!\mathbb{C}$ or less and $80\,^\circ\!\!RH$ or less.

2.3 The LEDs should be used within a year.

2.4 After opening the package, the LEDs should be kept at $30\,^\circ\!\!\mathrm{C}$ or less and 60%RH or less.

2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

2.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: $60\pm5^{\circ}$ for 24 hours.

3. Soldering Condition

When soldering, for Lamp without stopper type and must be leave a minimum of 3mm clearance from the base of the lens to the soldering point.

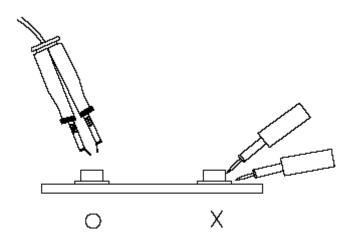
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering conditions:

Soldering Iron		Wave Soldering		
Temperature Soldering Time	300℃ Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat Time Solder Wave Soldering Time	100℃ Max. 60 sec. Max. 260℃ Max. 5 sec. Max.	

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.


4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260° for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.