

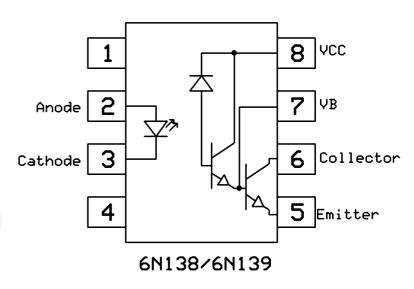
Features

- Low current 0.5mA
- Superior CTR-2000%
- CTR guaranteed 0–70 °C

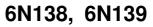
Applications

- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- μ P bus isolation
- Current loop receiver

Description


The 6N138 & 6N139 optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements.


The devices are packaged in an 8-pin DIP package and also available in gullwing (400mil) spacing and surface mount lead forming option.

Package Outline

Schematic

Note: Different lead forming options available. See package dimension.

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes		
Viso	Isolation voltage	5000	V _{RMS}			
Topr	Operating temperature		-55 ~ +100	°C		
Тѕтс	Storage temperature		-55 ~ +125	°C		
Tsol	Soldering temperature		260	°C		
Emitter						
lF	Forward current		25	mA		
I _{FP}	Peak forward current (50% duty, 1ms P.W)		50	50 mA		
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	А			
V _R	Reverse voltage	5	V			
PD	Power dissipation	40	mW			
Detector				•	•	
P _D	Power dissipation	100	mW			
V _{EBR}	Emitter-Base reverse voltage		0.5	V		
lo	Output Current	60	mA			
W	Output valte se	6N138	-0.5 to 7	V		
Vo	Output voltage	6N139	-0.5 to 18	V		
Vcc	Cumply yellogo	6N138	-0.5 to 7	V		
	Supply voltage	6N139	-0.5 to 18	V		

Electrical Characteristics $T_A = 0 - 70 \, \text{C}$, $V_{CC} = 4.5 \text{V}$ (unless otherwise specified).

Emitter Characteristics

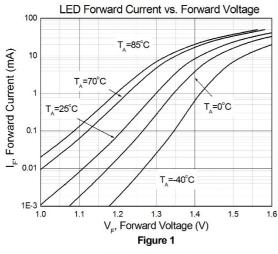
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I _F = 16mA	-	1.45	1.6	٧	
IR	Reverse Current	V _R = 5V	-	-	5	μΑ	
$\Delta V_F/\Delta T_A$	Temperature coefficient of forward voltage	I _F =16mA	-	-1.8	-	mV/℃	

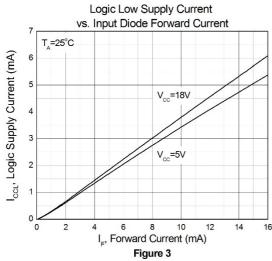
Detector Characteristics

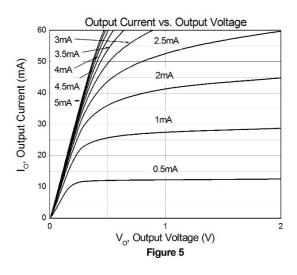
Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
la	Logic High Output	6N139	I _F =0mA, V _O =V _{CC} =18V,		0.008	80	μΑ -	
I _{ОН} Curren	Current	6N138	if=UIIA, VO=VCC=10V,	-	-	200		
Iccl	Logic Low Supply Current		I _F =1.6mA, V _O =Open, V _{CC} =18V	1	0.5	1.4	mA	
Іссн	Logic High Supply Current		I _F =0mA, V _O =Open, V _{CC} =18V	-	0.04	8	μΑ	

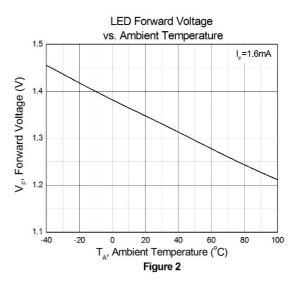
Transfer Characteristics

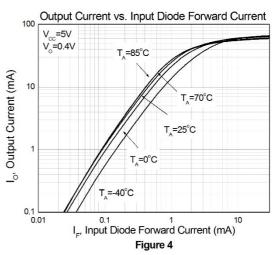
Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
	TR Current Transfer Ratio	6N139	I _F =0.5mA, V _O =0.4V,	400	2500	-		
CTR		6N138	1 10 1 1 0 5 1	300	2000	-	%	
		6N139	I _F =1.6mA, V _O =0.5V,	500	2000	-		
			I _F = 0.5mA, I _O = 2mA	-	0.04	0.4		
	La sia Laur Outro t	CNITOO	I _F = 1.6mA, I _O = 8mA	-	0.08	0.4		
V_{OL}	V _{OL} Logic Low Output Voltage	6N139	I _F = 5mA, I _O = 15mA	-	0.11	0.4	٧	
			I _F = 12mA, I _O = 24mA	-	0.16	0.4		
		6N138	I _F = 1.6mA, I _O = 4.8mA	-	0.05	0.4		

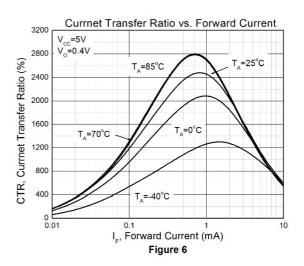

Electrical Characteristics $T_A = 0 - 70 \, \text{C}$, $V_{CC} = 5V$ (unless otherwise specified).

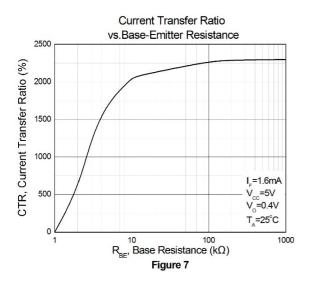

Switching Characteristics

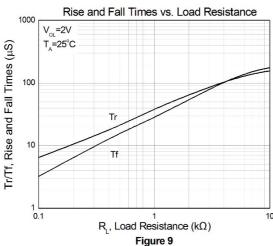

Symbol	Paramete	ers	Test Cond	litions	Min	Тур	Max	Units	Notes
		6N139	I _F = 0.5mA,		-	-	30	μs	
			R _L = 4.7k	T _A = 25 ⁰ C	-	4.8	25		
_	High to Low		I _F = 12mA,		-	-	2		
T_{PHL}	Propagation Delay		R _L = 250	T _A = 25 ⁰ C	-	0.2	1		
		6N138	I _F = 1.6mA,		-	-	15		
			R _L = 2.2k	T _A = 25 ⁰ C	-	1.35	10		
		CNIAGO	I _F = 0.5mA,		-	-	90	μs	
			R _L = 4.7k	T _A = 25 ⁰ C	-	15	60		
_	Low to High	6N139	I _F = 12mA,		-	-	10		
T_PLH	Propagation Delay		R _L = 250	T _A = 25 ⁰ C	-	1.6	7		
		CNITOO	I _F = 1.6mA,		-	-	50		
		6N138	R _L = 2.2k	T _A = 25 ⁰ C	-	7.6	35		
CM	Common Mode Transient		IF = 0mA, VCM = 10V _{P-P} ,		1 000				
СМн	Immunity at Logic High		T _A = 25 °C,R _L = 2.	2kΩ	1,000	-	-	V/μs	
CML	Common Mode Transient		I _F = 1.6mA, VCM	= 10V _{P-P} ,		1,000 -		ν/μδ	
CIVIL	Immunity at Logic Low		$T_A = 25 ^{\circ}\text{C}, R_L = 2.$	2kΩ	1,000	-	-		

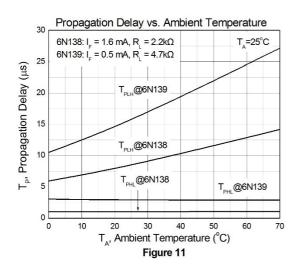


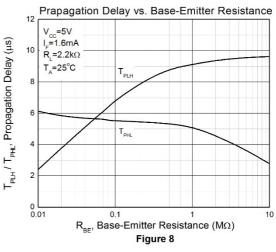

Typical Characteristic Curves

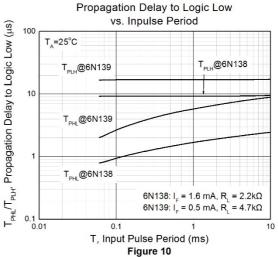


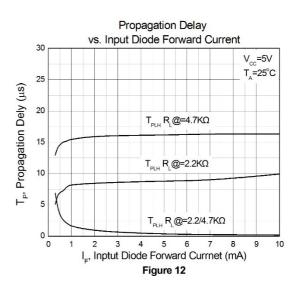


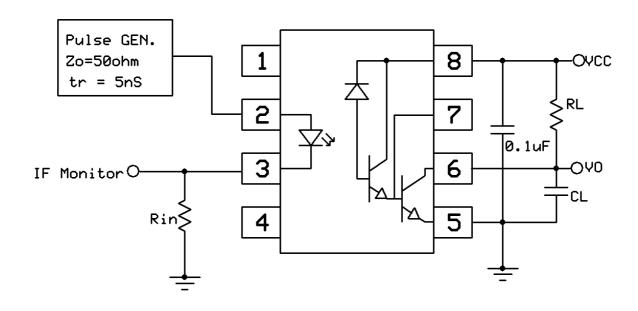


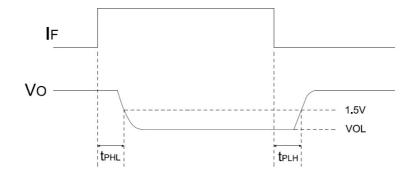




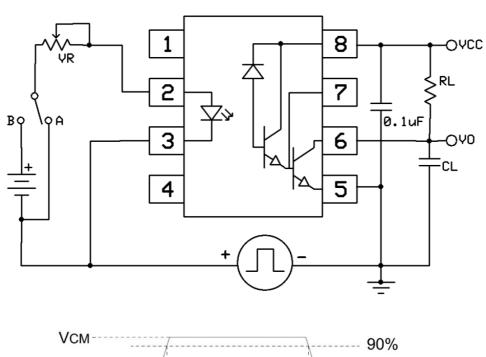


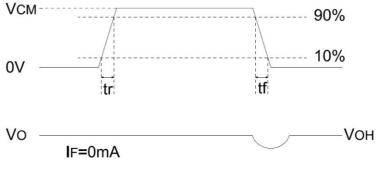






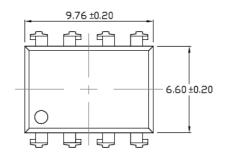
Test Circuits

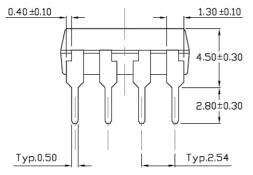


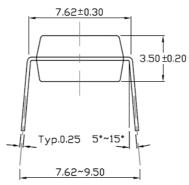


Switching Time Test Circuit

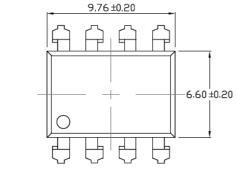
Test Circuits

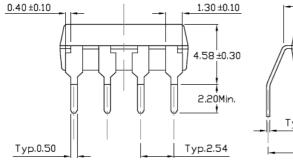


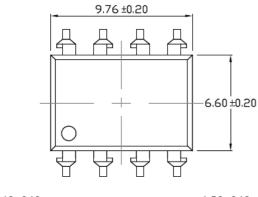

CMR Test Circuit

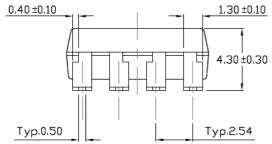


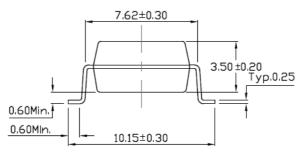
Package Dimension Dimensions in mm unless otherwise stated

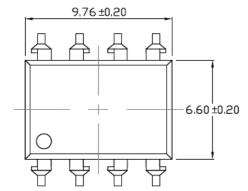

Standard DIP - Through Hole

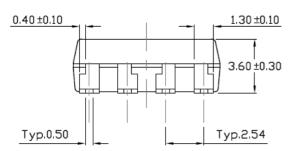


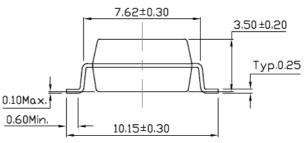

Gullwing (400mil) Lead Forming – Through Hole (M Type)



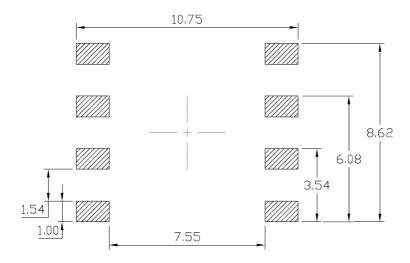


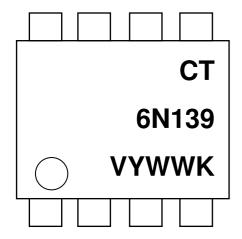

Surface Mount Lead Forming (S Type)





Surface Mount (Low Profile) Lead Forming (SL Type)





Recommended Solder Mask Dimensions in mm unless otherwise stated

Device Marking

CT : Denotes "CT Micro"6N139 : Product NumberV : VDE Option

Y : Fiscal Year
WW : Work Week

K : Production Code

Ordering Information

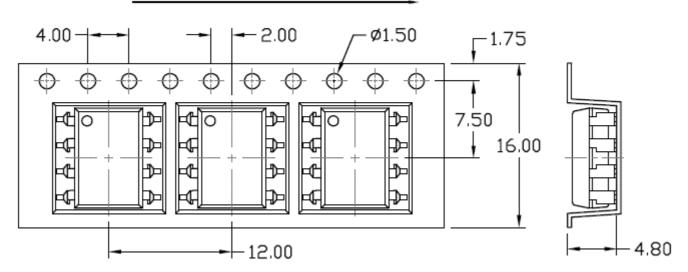
6N13X(V)(Y)(Z)

X = Part No. (8 or 9)

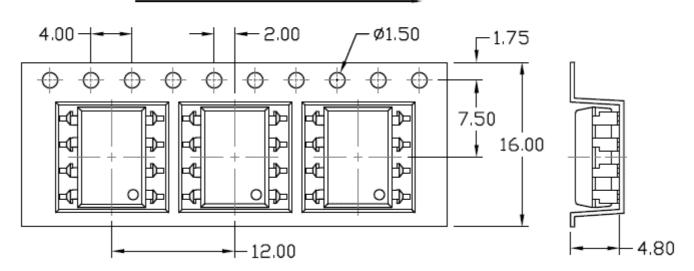
V = VDE Option (V or None)

Y = Lead form option (S, SL, M or none)

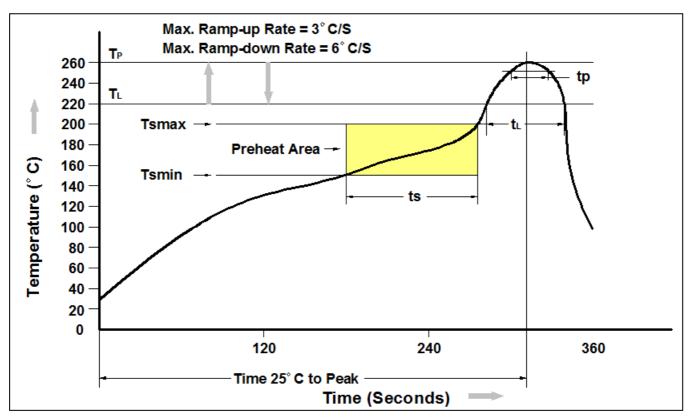
Z = Tape and reel option (T1, T2 or none)


Option	Description	Quantity
None	Standard 8 Pin Dip	40 Units/Tube
M	Gullwing (400mil) Lead Forming	40 Units/Tube
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1000 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1000 Units/Reel
SL(T1)	Surface Mount (Low Profile) Lead Forming- With Option 1 Taping	1000 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming- With Option 2 Taping	1000 Units/Reel

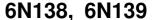
Carrier Tape Specifications Dimensions in mm unless otherwise stated


Option S(T1) & SL(T1)

Input Direction


Option S(T2) & SL(T2)

Input Direction



Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150℃
Temperature Max. (Tsmax)	200℃
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (TL)	217℃
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260 ℃ +0 ℃ / -5 ℃
Time (t _P) within 5 °C of 260 °C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25℃ to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result

in significant injury to the user.

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.