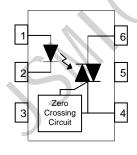


1.概述

MOC303X MOC304X MOC306X MOC308X 系列产品是由一个GaAs红外发光二极管和一个单晶硅双向过零晶闸管组成的光电耦合器

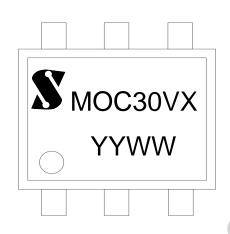

2.特点

- 峰值击穿电压 250V:MOC303X 400V:MOC304X 600V:MOC306X 800V:MOC308X
- 输入和输出之间高隔离电压(Viso=5000 Vrms)
- 紧凑双列直插式封装
- 无铅,符合 RoHS 标准

3.典型应用

- 电磁阀控制
- 镇流器
- 静态交流电源开关
- 微处理器 115 到 240VAC 外设接口
- 白炽灯调光器
- 温度控制
- 电机控制

4. 结构原理图和封装



5.印字

- ●印字中" **紧**"为品牌 LOGO
- ●印字中 "V" 代表 V_{DRM} 数位: 3/4/6/8;●印字中 "YY" 为年份代码 "X"代表 IFT 数位: 1/2/3
- ●印字中"ww"为周次代码

6. 极限参数 (T₄=25°C)

	参数	5	符号	额定值	単位
	正向电流		I _F	60	mA
输入	反向电压		V_R	6	V
	功耗			100	mW
	额定值降低因子(在1	a = 85℃ 以上)	P _D	3.8	mW/°C
		MOC303X		250	
	断态输出端电压	MOC304X	V _{DRM}	400	V
		MOC306X]	600	
		MOC308X		800	
输出	峰值重复浪涌电流(p	w=100μs,120pps)	I _{TSM}	1	Α
	开启态电流(均方根	值)	I _{T(RMS)}	100	mA
	功耗		P _C	300	mW
	额定值降低因子(在 1	a = 85℃ 以上)		7.4	mW/°C
总功耗			Ptot	330	mW
隔离电压*			Viso	5000	Vrms
工作温度			Topr	-55~+100	°C
储存温度			Tstg	-55~+125	°C
焊接温度(10s)			Tsol	260	°C

^{*}在相对湿度 40~60%下的进行交流电测试,此时 1、2 和 3 脚短接, 4、5 和 6 脚短接。

7. 产品特性参数(T_A=25°C,除非有特别说明)

	参数		符号	条件	最小	典型	最大	单位
<i>t</i> A)	正向电压		V _F	I _F =30mA	-	-	1.5	٧
输入	反向电流		I _R	V _R =6V	-	-	10	μΑ
	断态峰值电流		I _{DRM1}	V _{DRM} = 额定 V _{DRM} , I _F = 0mA	-	-	100	nA
	通态峰值电压		V _{TM}	I _{TM} =100mA 峰值, I _F = 额定 I _{FT}	-		3	V
输出	断态电压临界 上升率	MOC303X			1000			
		MOC304X	dv/dt	V _{PEAK} = 额定 V _{DRM} , I _F =0	1000		-	V/μs
		MOC306X			600	-		
		MOC308X			000			
	 抑制电压 (MT1-MT	2以上电压不触发)	V _{INH}	V _{PEAK} = 额定 V _{DRM}			20	V
	抑制状态漏电		I _{DRM2}	V _{DRM} = 额定 V _{DRM} I _F = 额定 I _{FT} 抑制状态			500	μΑ
	LED 触发电流	MOC3031 MOC3041 MOC3061 MOC3081		主端电压=3V	-	-	15	
传输特性		MOC3032 MOC3042 MOC3062 MOC3082	I _{FT}		-	-	10	mA
		MOC3033 MOC3043 MOC3063 MOC3083			-	-	5	
	维持电流		I _H		-	280	-	μΑ

8.典型光电特性曲线图

图 1 LED 正向电压对正向电流曲线图

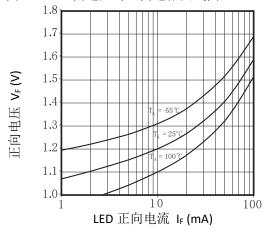


图 2 通态特性图

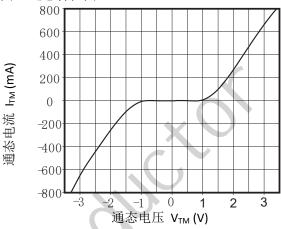


图 3 触发电流对环境温度曲线图

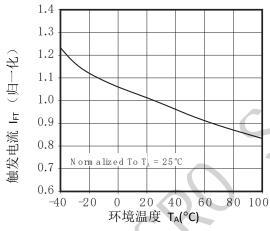


图 4 LED 触发电流对 LED 脉冲宽度曲线图

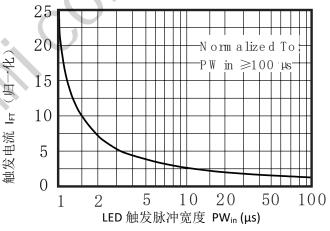


图 5 维持电流对温度曲线图

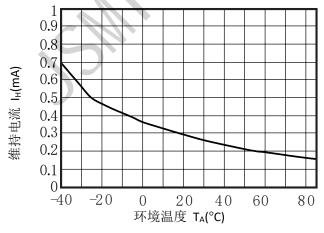
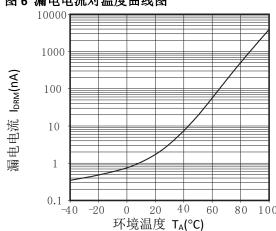
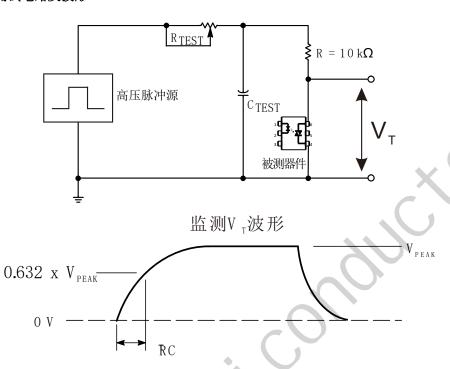
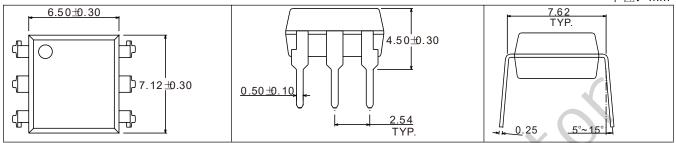




图 6 漏电电流对温度曲线图

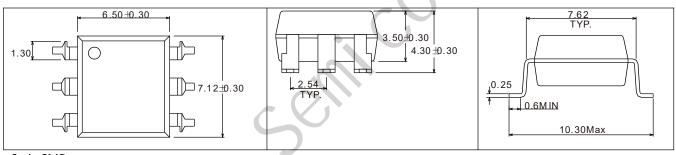
图 7 静态 dv/dt 测试电路及波形

通过 RC 电路施加于被测器件的输出端的高电压脉冲设置到所需的 V_{PEAK} 值上。LED 电流无需加上。波形 V_{T} 使用 X100 探头监测。通过调节 R_{TEST} 值,dv/dt(斜度)增加,直到被测器件观察到被触发(波形崩溃)。dv/dt 然后下降,直到被测器件停止被触发。此时,记录 τ_{RC} 值并可计算 dv/dt 了。

$$dv/dt = \frac{0.632 \times V_{PEAK}}{\tau_{RC}}$$


例如,对于MOC306X 系列 V_{PEAK} = 600V。其 dv/dt 值如下计算得到:

$$dv/dt = \frac{0.632 \times 600}{\tau_{BC}} = \frac{379.2}{\tau_{BC}}$$



9.外形尺寸

单位: mm

6-pin DIP

6-pin SMD

10.包装

■汇总表

封装 形式	包装方式	盘数量	盒数量	箱数量	静电袋	盒规格	箱(双瓦楞)规格	备注
SMD-6	卷盘 (φ330mm 蓝 盘)	1千 只/ 盘	2 盘/盒	10 盒/ 箱	380*380mm	340*60*340mm		首尾端空至少 200mm
DIP-6	管装 (500*12*11mm)	65 只/ 管	50 管/盒	10 盒/ 箱	不适用	525*128*56mm		每管使用蓝白胶塞, 方向须一致

11. 注意

- JSMSEMI持续不断改进质量、可靠性、功能或设计,保留此文件更改的权利恕不另行通知。
- 请遵守产品规格书使用,不对使用时不符合产品规格书条件而导致的质量问题负责。
- 本产品不用于军事、飞机、汽车、医疗、生命维持或救生等可能导致人身伤害或死亡的设备或装置。如需要高可靠性且用于以上特定设备或装置的产品,请联系我们销售人员以获取建议。
- 如对文件中表述的内容有疑问,欢迎联系我们。