4-Kbits I²C Serial EEPROM

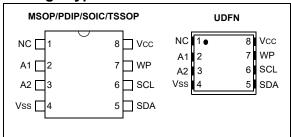
Device Selection Table

Part Number	Vcc Range	Max Clock Frequency	Temp. Range	Available Packages
24AA044	1.7V-5.5V	1 MHz ⁽¹⁾	I, E	P, SN, ST, MS, MU

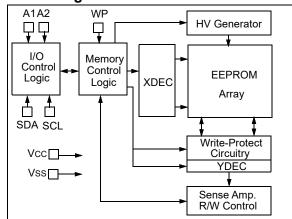
Note 1: 400 kHz for 1.8V ≤ Vcc < 2.2V 100 kHz for Vcc < 1.8V

Features

- Single Supply with Operation from 1.7V to 5.5V
- · Low-Power CMOS Technology:
 - Read current 400 μA, max
 - Standby current 1 μA, max at 85°C
- Two-Wire Serial Interface, I²C Compatible
- · Cascadable up to Four Devices
- Schmitt Trigger Inputs for Noise Suppression
- · Output Slope Control to Eliminate Ground Bounce
- 1 MHz, 400 kHz, and 100 kHz Clock Compatibility
- · Page Write Time 5 ms Maximum
- · Self-timed Erase/Write Cycle
- 16-Byte Page Write Buffer
- · Hardware Write-Protect
- · High Reliability:
 - More than one million erase/write cycles
 - Data retention >200 years
 - ESD protection >4,000V
- · Factory Programming Available
- RoHS Compliant
- · Temperature Ranges:
 - Industrial (I): -40°C to +85°C
 - Extended (E): -40°C to +125°C


Packages

 8-Lead MSOP, 8-Lead PDIP, 8-Lead SOIC, 8-Lead TSSOP and 8-Lead UDFN


Description

The Microchip Technology Inc. 24AA044 is a 4-Kbit Serial Electrically Erasable PROM with a voltage range of 1.7V to 5.5V. The device is organized as two blocks of 256 x 8-bit memory with a Two-Wire serial interface. Low-current design permits operation with standby and active currents of only 1 μA and 400 μA , respectively. The device has a page write capability of up to 16 bytes of data. Functional address lines allow the connection of up to four 24AA044 devices on the same bus for up to 16 Kbits of contiguous EEPROM memory.

Package Types

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

Vcc	6.5\
All inputs and outputs w.r.t. Vss	0.3V to 6.5\
Storage temperature	65°C to +150°C
Ambient temperature with power applied	40°C to +125°C
ESD protection on all pins	≥ 4 k\

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS			Industrial (Extended (5°C, Vcc = +1.7V to +5.5V 25°C, Vcc = +1.7V to +5.5V
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
D1	VIH	High-Level Input Voltage	0.7 Vcc	Vcc + 0.5	V	_
D2	VIL	Low Lovel Input Voltage	_	0.3 Vcc	V	Vcc ≥ 2.5V
D2	VIL	Low-Level Input Voltage	_	0.2 Vcc	V	Vcc < 2.5V
D3	VHYS	Hysteresis of Schmitt Trigger Inputs	0.05 Vcc	_	V	(Note)
D4	Vol	Low-Level Output Voltage	_	0.40	V	IOL = 3.0 mA, Vcc = 2.5V
D5	Li	Input Leakage Current	_	±1	μΑ	VIN = Vss or Vcc
D6	ILO	Output Leakage Current	_	±1	μΑ	Vout = Vss or Vcc
D7	CIN, COUT	Pin Capacitance (all inputs/outputs)	_	10	pF	VCC = 5.5V (Note) TA = 25°C, FCLK = 1 MHz
D8	ICC WRITE	Operating Current	_	3	mA	Vcc = 5.5V
D9	ICC READ	Operating Current	_	400	μΑ	Vcc = 5.5V, SCL = 1 MHz
D10	Iccs	Standby Current	_	1	μА	Industrial SDA, SCL = Vcc A1, A2, WP = Vss
D10	1005	Standby Current	_	5	μА	Extended SDA, SCL = Vcc A1, A2, WP = Vss

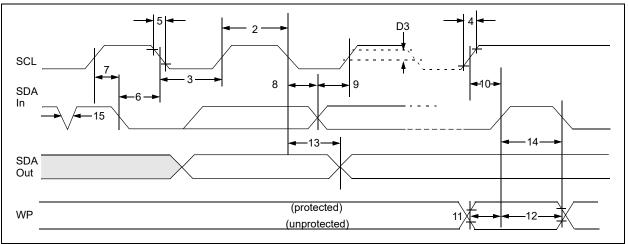
Note: This parameter is periodically sampled and is not 100% tested.

TABLE 1-2: AC CHARACTERISTICS

AC CHARACTERISTICS				TA = -40°C to +85°C, Vcc = +1.7V to +5. TA = -40°C to +125°C, Vcc = +1.7V to +5			
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
			_	100	kHz	1.7V ≤ Vcc < 1.8V	
1	FCLK	Clock Frequency	_	400	kHz	1.8V ≤ Vcc < 2.2V	
			_	1000	kHz	2.2V ≤ Vcc < 5.5V	
			4000	_	ns	1.7V ≤ Vcc < 1.8V	
2	THIGH	Clock High Time	600	_	ns	1.8V ≤ Vcc < 2.2V	
			500	_	ns	2.2V ≤ Vcc < 5.5V	
			4700	_	ns	1.7V ≤ Vcc < 1.8V	
3	TLOW	Clock Low Time	1300	_	ns	1.8V ≤ Vcc < 2.2V	
			500	_	ns	2.2V ≤ Vcc < 5.5V	
			_	1000	ns	1.7V ≤ Vcc < 1.8V	
4	TR	SDA and SCL Rise Time (Note 1)	_	300	ns	1.8V ≤ Vcc < 2.2V	
			_	300	ns	2.2V ≤ Vcc < 5.5V	
			_	300	ns	1.7V ≤ Vcc < 1.8V	
5	TF	SDA and SCL Fall Time (Note 1)	_	300	ns	1.8V ≤ Vcc < 2.2V	
			_	100	ns	2.2V ≤ VCC < 5.5V	
			4000	_	ns	1.7V ≤ Vcc < 1.8V	
6	THD:STA	Start Condition Hold Time	600	_	ns	1.8V ≤ Vcc < 2.2V	
			250	_	ns	2.2V ≤ Vcc < 5.5V	
			4700	_	ns	1.7V ≤ Vcc < 1.8V	
7	Tsu:sta	Start Condition Setup Time	600	_	ns	1.8V ≤ Vcc < 2.2V	
			250	_	ns	2.2V ≤ Vcc < 5.5V	
8	THD:DAT	Data Input Hold Time	0	_	ns	(Note 2)	
			250	_	ns	1.7V ≤ Vcc < 1.8V	
9	TSU:DAT	Data Input Setup Time	100	_	ns	1.8V ≤ Vcc < 2.2V	
			100	_	ns	2.2V ≤ Vcc < 5.5V	
			4000	_	ns	1.7V ≤ Vcc < 1.8V	
10	Tsu:sto	Stop Condition Setup Time	600	_	ns	1.8V ≤ Vcc < 2.2V	
			250	_	ns	2.2V ≤ Vcc < 5.5V	
			4000	_	ns	1.7V ≤ Vcc < 1.8V	
11	Tsu:wp	WP Setup Time	600	_	ns	1.8V ≤ Vcc < 2.2V	
			600	_	ns	2.2V ≤ Vcc < 5.5V	
			4700	_	ns	1.7V ≤ Vcc < 1.8V	
12	THD:WP	WP Hold Time	1300	_	ns	1.8V ≤ Vcc < 2.2V	
			1300	_	ns	2.2V ≤ Vcc < 5.5V	
			_	3500	ns	1.7V ≤ Vcc < 1.8V	
13	ТАА	Output Valid From Clock (Note 2)	_	900	ns	1.8V ≤ VCC < 2.2V	
-		,	_	400	ns	2.2V ≤ Vcc < 5.5V	
		Bus Free Time: Time the bus must	4700		ns	1.7V ≤ Vcc < 1.8V	
14	TBUF	be free before a new transmission	1300		ns	1.8V ≤ VCC < 2.2V	
		can start	500		ns	2.2V ≤ Vcc < 5.5V	
15	Tsp	Input Filter Spike Suppression	_	50	ns	(Note 1)	

Note 1: Not 100% tested.

^{2:} As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.


^{3:} This parameter is not tested but is ensured by characterization.

IACCHARACTERISTICS						+85°C, Vcc = +1.7V to +5.5V +125°C, Vcc = +1.7V to +5.5V
Param. No.	Symbol	Characteristic	Min. Max. Units Conditions			
16	Twc	Write Cycle Time (byte or page)	_	5	ms	_
17	_	Endurance	1M	_	cycles	+25°C, 5.5V, Page mode (Note 3)

Note 1: Not 100% tested.

- 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
- **3:** This parameter is not tested but is ensured by characterization.

FIGURE 1-1: BUS TIMING DATA

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Name	8-Lead PDIP	8-Lead SOIC	8-Lead TSSOP	8-Lead UDFN	8-Lead MSOP	Description	
NC	1	1	1	1	1	Not Connected	
A1	2	2	2	2	2	Chip Address Input	
A2	3	3	3	3	3	Chip Address Input	
Vss	4	4	4	4	4	Ground	
SDA	5	5	5	5	5	Serial Address/Data I/O	
SCL	6	6	6	6	6	Serial Clock	
WP	7	7	7	7	7	Write-Protect Input	
Vcc	8	8	8	8	8	Power Supply	

2.1 Chip Address Inputs (A1, A2)

The levels on the A1 and A2 inputs are compared with the corresponding bits in the client address. The chip is selected if the compare is true.

Up to four 24AA044 devices may be connected to the same bus by using different Chip Select bit combinations. These inputs must be connected to either Vcc or Vss.

2.2 Serial Data (SDA)

SDA is a bidirectional pin used to transfer addresses and data into and out of the device. Since it is an opendrain terminal, the SDA bus requires a pull-up resistor to Vcc (typical 10 k Ω for 100 kHz, 2 k Ω for 400 kHz and 1 MHz).

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions.

2.3 Serial Clock (SCL)

The SCL input is used to synchronize the data transfer to and from the device.

2.4 Write-Protect (WP)

WP is the hardware write-protect pin. It must be tied to Vcc or Vss. If WP is tied to Vcc, hardware write protection is enabled. If WP is tied to Vss, hardware write protection is disabled.

2.5 Noise Protection

The 24AA044 employs a Vcc threshold detector circuit, which disables the internal erase/write logic if the Vcc is below 1.35V at nominal conditions.

The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

3.0 FUNCTIONAL DESCRIPTION

The 24AA044 supports a bidirectional, Two-Wire bus and data transmission protocol. A device that sends data onto the bus is defined as a transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a host device that generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions, while the 24AA044 works as a client. Both a host and a client can operate as a transmitter or a receiver, but the host device determines which mode is activated.

4.0 BUS CHARACTERISTICS

The following **bus protocol** has been defined as follows:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined in Figure 4-1.

4.1 Bus Not Busy (A)

Both data and clock lines remain high.

4.2 Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

4.3 Stop Data Transfer (C)

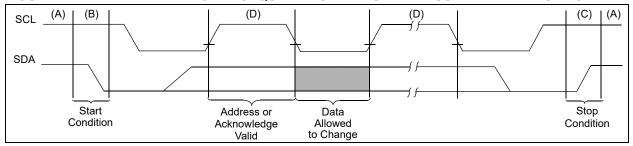
A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must end with a Stop condition.

4.4 Data Valid (D)

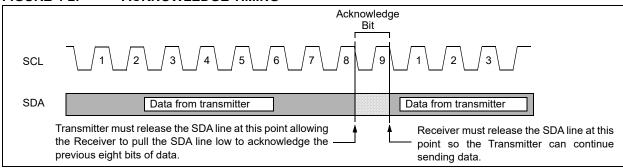
The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

The data on the line must be changed during the low period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the host device and is, theoretically, unlimited (though only the last sixteen will be stored when performing a write operation). When an overwrite does occur, it will replace data in a First-In First-Out method.


4.5 Acknowledge

Each receiving device, when addressed, is required to generate an Acknowledge after the reception of each byte. The host device must generate an extra clock pulse, which is associated with this Acknowledge bit.

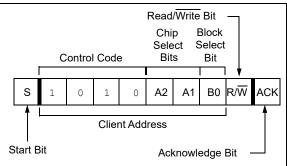

Note: The 24AA044 does not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable-low during the high period of the Acknowledge-related clock pulse. In addition, setup and hold times must be taken into account. A host must signal an end of data to the client by not generating an Acknowledge bit on the last byte that has been clocked out of the client. In this case, the client must leave the data line high to enable the host to generate the Stop condition (Figure 4-2).

FIGURE 4-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS CHARACTERISTICS

FIGURE 4-2: ACKNOWLEDGE TIMING

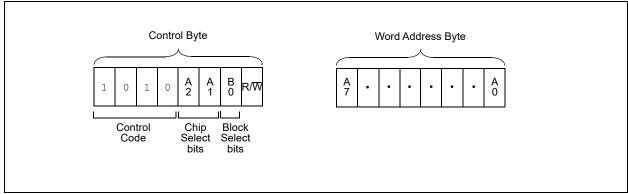
5.0 DEVICE ADDRESSING


A control byte is the first byte received following the Start condition from the host device (Figure 5-1). The control byte consists of a 4-bit control code. For the 24AA044, this is set as '1010' binary for read and write operations. The next two bits of the control byte are the Chip Select bits (A2, A1). The Chip Select bits allow the use of up to four 24AA044 devices on the same bus and are used to select which device is accessed. The Chip Select bits in the control byte must correspond to the logic levels on the corresponding A2 and A1 pins for the device to respond. These bits are, in effect, the two Most Significant bits of the array address.

The next bit of the control byte is the block select bit (B0). This bit acts as the A8 address bit for accessing the entire array.

The last bit of the control byte defines the operation to be performed. When set to "1", a read operation is selected. When set to "0", a write operation is selected." The next byte received defines the address of the first data byte (Figure 5-2).

Following the Start condition, the 24AA044 monitors the SDA bus, checking the control byte being transmitted. Upon receiving a '1010' code and appropriate Chip Select bits, the client device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the 24AA044 will select a read or write operation.


FIGURE 5-1: CONTROL BYTE FORMAT

5.1 Contiguous Addressing Across Multiple Devices

The Chip Select bits A2 and A1 can be used to expand the contiguous address space for up to 16 Kbits by adding up to four 24AA044 devices on the same bus. In this case, software can use A1 of the <u>control byte</u> as address bit A9 and A2 as address bit A10. It is not possible to sequentially read across device boundaries.

FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGNMENTS

6.0 WRITE OPERATIONS

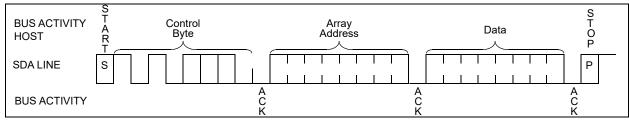
6.1 Byte Write

Following the Start signal from the host, the device code (4 bits), the Chip Select bits (2 bits), the block select bit (1 bit) and the R/W bit (which is a logic-low) is placed onto the bus by the host transmitter. The device will acknowledge this control byte during the ninth clock pulse. The next byte transmitted by the host is the array address and will be written into the Address Pointer of the 24AA044. After receiving another Acknowledge signal from the 24AA044, the host device will transmit the data byte to be written into the addressed memory location. The 24AA044 acknowledges again and the host generates a Stop condition. This initiates the internal write cycle and, during this time, the 24AA044 will not generate Acknowledge signals (Figure 6-1). If an attempt is made to write to the protected portion of the array when the hardware write protection has been enabled, the device will acknowledge the command, but no data will be written.

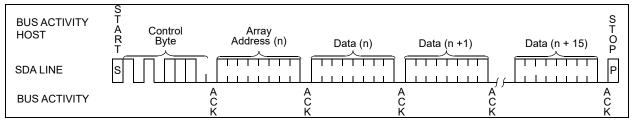
6.2 Page Write

The write control byte, array address and the first data byte are transmitted to the 24AA044 in the same way as in a byte write. However, instead of generating a Stop condition, the host transmits up to 15 additional data bytes to the 24AA044, which are temporarily stored in the on-chip page buffer and will be written into the memory once the host has transmitted a Stop condition. Upon receipt of each byte, the four lower-order Address Pointer bits are internally incremented by one.

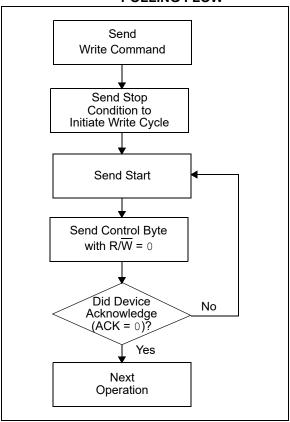
The higher-order five bits of the array address remain constant. If the host should transmit more than 16 bytes prior to generating the Stop condition, the Address Counter will roll over and the previously received data will be overwritten. As with the byte write operation,


once the Stop condition is received, an internal write cycle will begin (Figure 6-2). If an attempt is made to write to the protected portion of the array when the hardware write protection has been enabled, the device will acknowledge the command, but no data will be written.

- Note 1: When doing a write of less than 16 bytes, the data on the rest of the page is refreshed along with the data bytes being written. This will force the entire page to endure a write cycle. For this reason, endurance is specified per page.
 - 2: Page write operations are limited to writing bytes within a single physical page regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of page size - 1. If a Page Write command attempts to write across a physical page boundary, the result is that the data wrap around to the beginning of the current (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is, therefore, necessary for the application software to prevent page write operations that would attempt to cross a page boundary.


6.3 Write Protection

The WP pin must be tied to Vcc or Vss. If tied to Vcc, the entire array will be write-protected. If the WP pin is tied to Vss, write operations to all address locations are allowed.


FIGURE 6-2: PAGE WRITE

7.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, acknowledge polling can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the host, the device initiates the internally-timed write cycle, with ACK polling being initiated immediately. This involves the host sending a Start condition followed by the control byte for a Write command ($R/\overline{W}=0$). If the device is still busy with the write cycle, no ACK will be returned. If no ACK is returned, the Start bit and control byte must be re-sent. If the cycle is complete, the device will return the ACK and the host can then proceed with the next read or write command. See Figure 7-1 for a flow diagram of this operation.

FIGURE 7-1: ACKNOWLEDGE POLLING FLOW

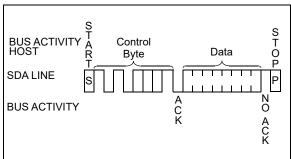
8.0 READ OPERATIONS

Read operations are initiated in the same <u>way</u> as write operations, with the exception that the R/W bit of the client address is set to '1'. There are three basic types of read operations: current address read, random read and sequential read.

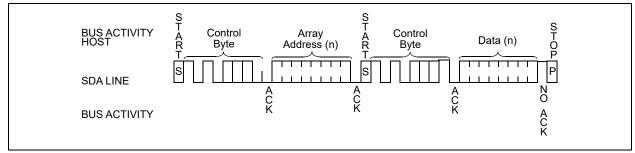
8.1 Current Address Read

The 24AA044 contains an Address Counter that maintains the address of the last data byte accessed, internally incremented by one. Therefore, if the previous read access was to address 'n', the next current address read operation would access data from address n + 1. Upon receipt of the client address with the R/W bit set to '1', the 24AA044 issues an Acknowledge and transmits the 8-bit data value. The host will not acknowledge the transfer, but does generate a Stop condition and the 24AA044 discontinues transmission (Figure 8-1).

8.2 Random Read


Random read operations allow the host to access any memory location in a random manner. To perform this type of read operation, the array address must first be set. This is accomplished by sending the array address to the 24AA044 as part of a write operation. Once the array address is sent, the host generates a Start condition following the Acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. The host then issues the control byte again, but with the R/W bit set to '1'. The 24AA044 will then issue an Acknowledge and transmits the 8-bit data value. The host will not acknowledge the transfer but does generate a Stop condition and the 24AA044 discontinues transmission (Figure 8-2). After this command, the internal Address Pointer will point to the address location following the one that was just read.

8.3 Sequential Read


Sequential reads are initiated in the same way as a random read except that after the 24AA044 transmits the first data byte, the host issues an Acknowledge (as opposed to a Stop condition in a random read). This directs the 24AA044 to transmit the next sequentially-addressed 8-bit value (Figure 8-3).

To provide sequential reads, the 24AA044 contains an internal Address Pointer, which is incremented by one upon completion of each operation. This Address Pointer allows the memory contents to be serially read during one operation. The internal Address Pointer will automatically roll over from address 1FFh to address 000h.

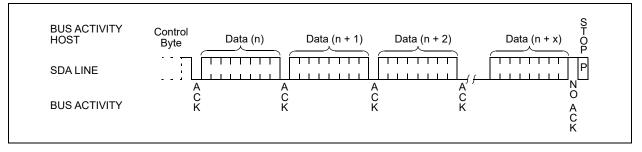
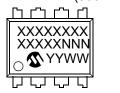
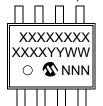

FIGURE 8-1: CURRENT ADDRESS READ

FIGURE 8-2: RANDOM READ


FIGURE 8-3: SEQUENTIAL READ


9.0 PACKAGING INFORMATION

9.1 Package Marking Information

8-Lead SOIC (3.90 mm)

8-Lead TSSOP

8-Lead MSOP


8-Lead 2x3 UDFN

Example:

Example:

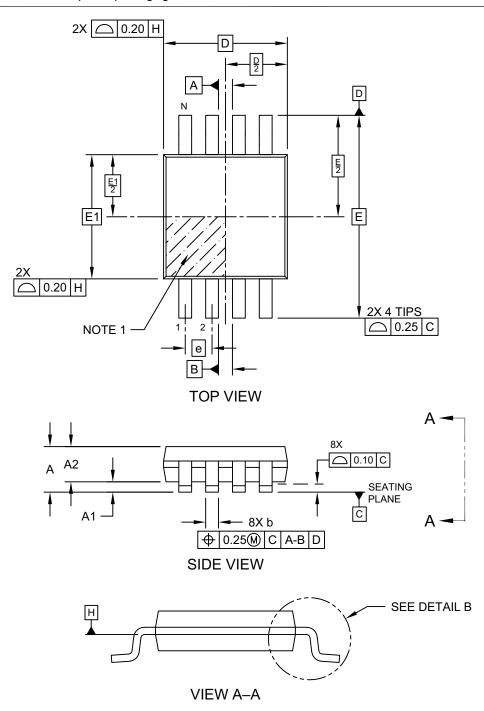
Example:

Example:

Example:

Part Number	1st Line Marking Codes								
Part Number	PDIP	SOIC	TSSOP	MSOP	UDFN				
24AA044	24AA044	24AA044	AACL	4A44YY	CAD				

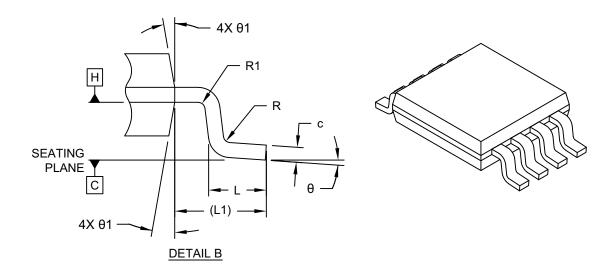
Legend:	XXX	Part	numl	oer	or	pai	rt	numb	er	code
	T	Temper	ature			(Ι,			E)
	Υ	Year	code	(last		digit	of	caler	ndar	year)
	YY	Year	code	(last	2	digits	of	cale	endar	year)
	WW	Week	code	(week	of	Janua	ry 1	is	week	'01')
	NNN			aceability						kages)
	e 3	RoHS-o	compliant	JEDEC®	des	signator f	or Matt	e Tin (Sn)	


Note: Standard OTP marking consists of Microchip part number, year code, week code and traceability code.

Note: For very small packages with no room for the JEDEC[®] designator (e3), the marking will only appear on the outer carton or reel label.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111-MS Rev F Sheet 1 of 2

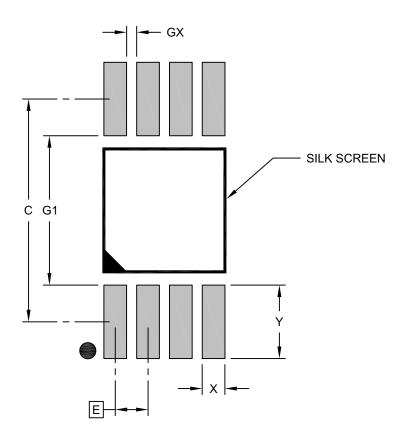
8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				MILLIMETERS			
	Dimension Li	imits	MIN	NOM	MAX			
Number of Terminals		N		8				
Pitch		е		0.65 BSC				
Overall Height		Α	-	_	1.10			
Standoff		A1	0.00	_	0.15			
Molded Package Thickness		A2	0.75	0.85	0.95			
Overall Length		D	3.00 BSC					
Overall Width		Е	4.90 BSC					
Molded Package Width		E1	3.00 BSC					
Terminal Width		b	0.22	_	0.40			
Terminal Thickness		С	0.08	-	0.23			
Terminal Length		L	0.40	0.60	0.80			
Footprint		L1		0.95 REF				
Lead Bend Radius		R	0.07 – –					
Lead Bend Radius		R1	0.07	-	-			
Foot Angle		θ	0°	_	8°			
Mold Draft Angle		θ1	5°	_	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-MS Rev F Sheet 2 of 2

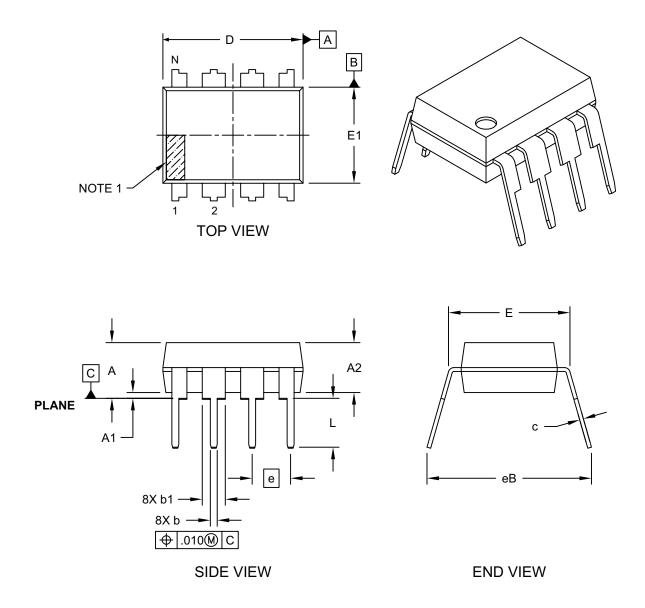
8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER	S	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С		4.40	
Contact Pad Width (X8)	Х			0.45
Contact Pad Length (X8)	Υ			1.45
Contact Pad to Contact Pad (X4)	G1	2.95		
Contact Pad to Contact Pad (X6)	GX	0.20		

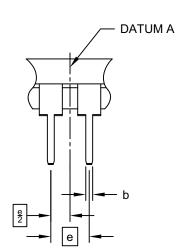
Notes:

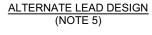

1. Dimensioning and tolerancing per ASME Y14.5M

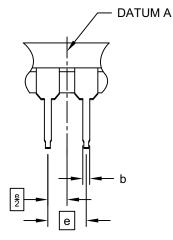
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-MS Rev F

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

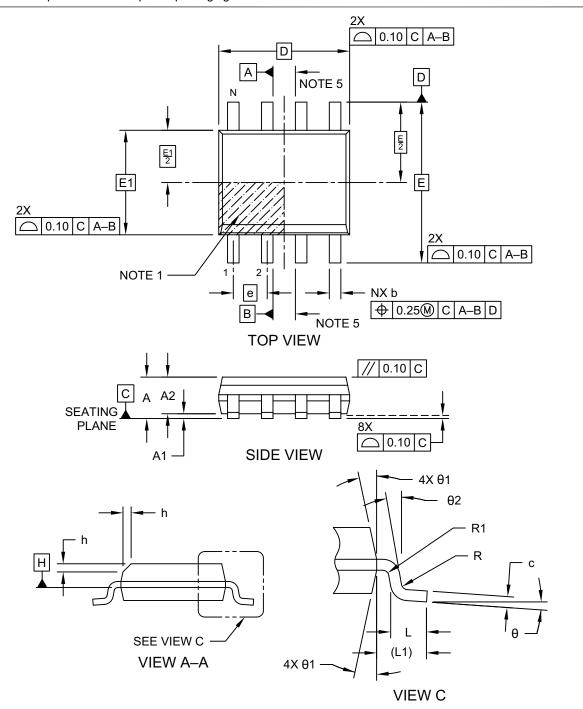



Microchip Technology Drawing No. C04-018-P Rev F Sheet 1 of 2

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

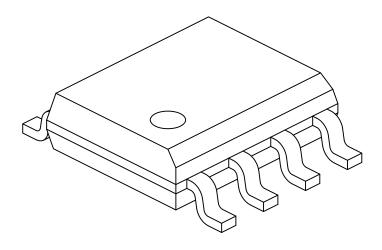
	INCHES			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		.100 BSC	
Top to Seating Plane	Α		-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-P Rev F Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

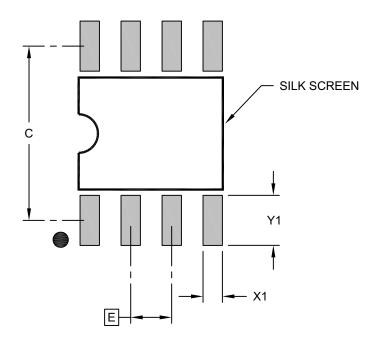
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	Е	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25 – 0.50			
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04 REF		
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	1	0.51	
Lead Bend Radius	R	0.07	-	_	
Lead Bend Radius	R1	0.07	_	_	
Foot Angle	θ	0°	_	8°	
Mold Draft Angle	θ1	5°	-	15°	
Lead Angle	θ2	0°	_	_	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 2 of 2

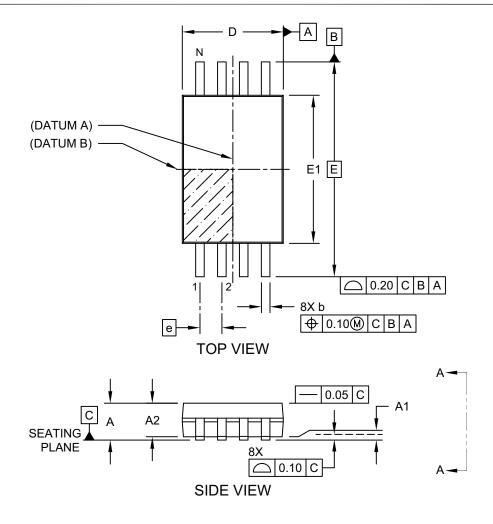
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

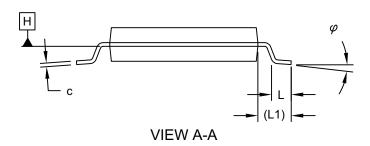
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

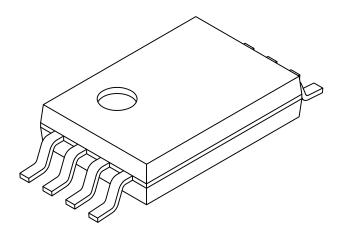

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev K

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-086 Rev C Sheet 1 of 2

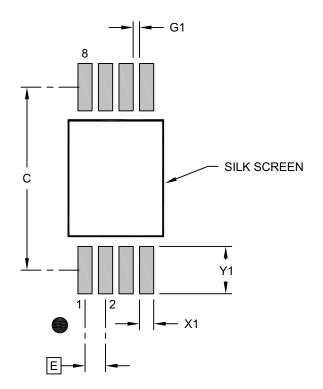
8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	е	0.65 BSC			
Overall Height	Α	1	-	1.20	
Molded Package Thickness	A2	0.80 1.00 1.		1.05	
Standoff	A1	0.05	-	-	
Overall Width	Е	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Overall Length	D	2.90	3.00	3.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.19	-	0.30	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

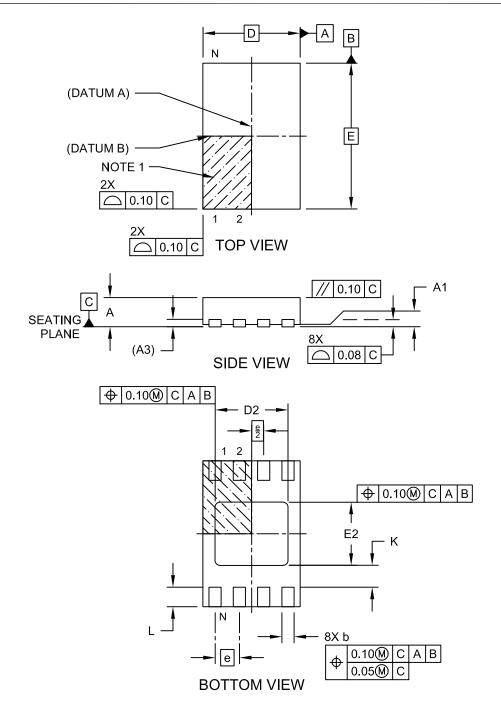
Microchip Technology Drawing C04-086 Rev C Sheet 2 of 2

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

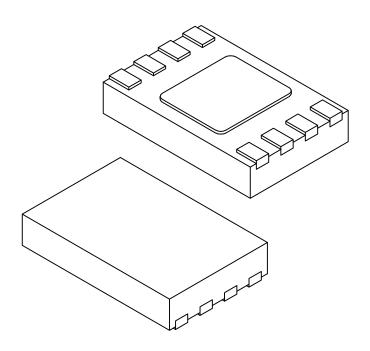
Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С		5.80	
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.50
Contact Pad to Center Pad (X6)	G1	0.20		


Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2086 Rev B

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2x3 mm Body [UDFN] Atmel Legacy Global Package Code YNZ


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-21355-Q4B Rev C Sheet 1 of 2

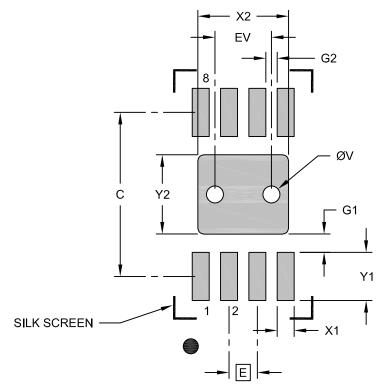
8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2x3 mm Body [UDFN] Atmel Legacy Global Package Code YNZ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	Ν	8			
Pitch	е	0.50 BSC			
Overall Height	Α	0.50 0.55 0.60			
Standoff	A1	0.00 0.02 0.0		0.05	
Terminal Thickness	А3	0.152 REF			
Overall Length	D	2.00 BSC			
Exposed Pad Length	D2	1.40 1.50 1.60		1.60	
Overall Width	Е	3.00 BSC			
Exposed Pad Width	E2	1.20	1.30	1.40	
Terminal Width	b	0.18	0.25	0.30	
Terminal Length	L	0.25	0.35	0.45	
Terminal-to-Exposed-Pad	K	0.20		=	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-21355-Q4B Rev C Sheet 2 of 2

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2x3 mm Body [UDFN] Atmel Legacy Global Package Code YNZ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	X2	1.6		1.60
Optional Center Pad Length	Y2			1.40
Contact Pad Spacing	С		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.85
Contact Pad to Center Pad (X8)	G1	0.33		
Contact Pad to Contact Pad (X6)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

- Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension, Theoretically exact yelly
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-23355-Q4B Rev C

APPENDIX A: REVISION HISTORY

Revision B (01/2023)

Updated formatting to current template; Replaced terminology "Master" and "Slave" with "Host" and "Client", respectively.

Revision A (04/2014)

Initial release of the document.

NOTES:

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	[X] ⁽¹⁾	<u>-X</u> Temperature Range	/XX Package
Device:	24AA044: 1.7V, 4	1-Kbit Addressable S	erial EEPROM.
Tape and Reel Option:		ard packaging (tube on the land Reel ⁽¹⁾	or tray)
Temperature Range:	I = -40°C E = -40°C	to +85°C (Industrial) to +125°C (Extended	d)
Package:	SN = Plastic 8-Lea ST = Plastic 8-Lea MS = Plastic 8-Lea MUY ⁽²⁾ = Plastic	Dual In-Line – 300 of (PDIP) Small Outline - Nard (SOIC) Thin Shrink Small Cd (TSSOP) Micro Small Outlined (MSOP) Dual Flat, No Lead 75 mm Body, 8-Lead nly)	row, 3.90 mm Body, Outline – 4.4 mm, Package, Package -

Examples:

- 24AA044-I/P: 1.7V Serial EEPROM, Industrial Temperature, PDIP Package a)
- 24AA044-I/SN: 1.7V Serial EEPROM, Industrial b) Temperature, SOIC Package
- 24AA044T-I/ST: 1.7V Serial EEPROM, Industrial
- Temperature, Tape and Reel, TSSOP Package 24AA044T-E/MUY: 1.7V Serial EEPROM, d) Extended Temperature, Tape and Reel, UDFN Package
- 24AA044T-E/MS:1.7V Serial EEPROM, Extended Temperature, Tape and Reel, MSOP Package

- Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
 - "Y" indicates a Nickel Palladium Gold (NiPdAu) finish.

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1876-8

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820