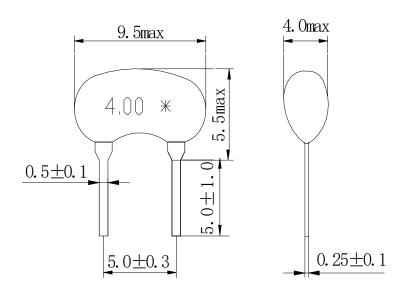
1. SCOPE

This specification shall cover the characteristics of the ceramic resonator with the type ZTAWS4.00MG55AC0-B0.


2. PART NO

PART NUMBER	PREVIOUS PART NUMBER	
ZTAWS4.00MG55AC0-B0	ZTAWS4.00MG	
CUSTOMER PART NO	SPECIFICATION NO	

3. OUTLINE DIMENSIONS AND MARK

- 3.1 Appearance: No visible damage and dirt.
- 3.2 Construction: Leads are soldered on electrode and body is molded by resin.
- 3.3 The products conform to the RoHS directive and national environment protection law.

3.4 Dimensions and mark

*: EIAJ MONTHLY CODE

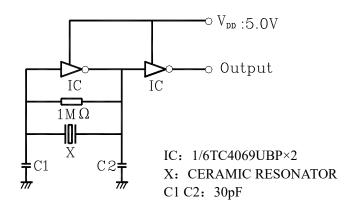
4. ELECTRICAL SPECIFICATIONS

4.1 RATING

Items	Requirement	
Withstanding Voltage (V)	50 (DC, 1min)	
Insulation Resistance Ri, $(M\Omega)$ min.	500 (10V, 1min)	
Operating temperature	-25°C∼85°C	
Storage temperature	-55°C∼+85°C	
Poting Voltage IID (V)	6V DC	
Rating Voltage UR (V)	15V p-p	

4.2 ELECTRICAL SPECIFICATIONS

Items	Requirement	
Oscillation Frequency Fosc (MHz)	4.000	
Frequency Accuracy (%)	± 0.5	
Resonant Impedance Ro (Ω) max.	30	
Temperature Coefficient of Oscillation	± 0.3 (Oscillation Frequency drift,	
Frequency (%) max.	-25°C∼+85°C)	
Oscillation Frequency	± 0.3 (From initial value)	
Aging Rate (10years) (%) max *	±0.5 (From mittar value)	


^{*} Components shall be left in a chamber of +85 \pm 2 $^{\circ}$ C for 1000 hours, then measured after leaving in natural condition for 1 hour.

5. TEST

5.1 Test Conditions

Parts shall be tested under the condition (Temp.: $20\pm15\,^{\circ}$ C,Humidity : $65\pm20\%$ R.H.) unless the standard condition(Temp.: $25\pm2\,^{\circ}$ C,Humidity : $65\pm5\%$ R.H.) is regulated to measure.

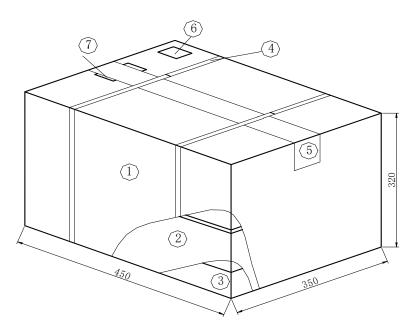
5.2 Test Circuit

6. PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS

No.	Item	Condition of Test		Performance Requirement
6.1	Humidity	Subject the resonator at $40 \pm 2^{\circ}$ C and 90%-95% R.H. for 500h, resonator shall be measured after being placed in natural conditions for 1h.		It shall fulfill Table 1.
6.2	High Temperature Exposure	Subject the resonator to 85 ± 2 °C for 500h, resonator shall be measured after being placed in natural conditions for 1h.		It shall fulfill Table 1.
6.3	Low Temperature Exposure	Subject the resonator to -55 ± 2 °C for 500h, resonator shall be measured after being placed in natural conditions for 1h.		It shall fulfill Table 1.
6.4	Temperature Cycling	After temperature cycliperformed 5 times, resonafter being placed in nature Temperature $-25\pm3^{\circ}\mathbb{C}$ $85\pm3^{\circ}\mathbb{C}$	It shall fulfill Table 1.	
6.5	Vibration	Subject the resonator to x y and z axis with the a frequency shall be varied limits of 10Hz-55Hz and measured.	It shall fulfill Table 1.	
6.6	Mechanical Shock	Resonator shall be m random dropping from concrete floor.	No visible damage and it shall fulfill Table 1.	
6.7	Resistance to Soldering Heat	Lead terminals are immersed up to 2 mm from resonator's body in soldering bath of 260 °C \pm 5 °C for 10s \pm 1s and then resonator shall be measured after being placed in natural conditions for 1h.		It shall fulfill Table 1.
6.8	Solderability	Lead terminals are immersed up to 2mm from resonator's body in soldering bath of 250 $^{\circ}$ C \pm 5 $^{\circ}$ C for 3s \pm 0.5s.		More than 95% of the terminal surface of the filter shall be covered with fresh solder.

6. PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS

No.	Item	Condition of Test	Performance Requirements
6.9 6.9.1	Terminal Strength Terminal Pulling	Force of 5N is applied to each lead in axial direction for 10s ± 1s.	
6.9.2	Terminal Bending	When force of 5N is applied to each lead in axial direction, the lead shall folded up 90 ° from the axial direction and folded back to the axial direction. The speed of folding shall be each 3s.	No visible damage and it shall fulfill Table 1.


Table 1

Item	Specification after test	
Oscillation Frequency Change \[\Delta \text{ fosc/fosc} (\%) \text{ max.} \]	±0.3	
Resonant Impedance Ro (Ω) max. 30		
The limits in the above table are referenced to the initial measurements.		

7. PACKAGE

To protect the products in storage and transportation, it is necessary to pack them (outer and inner package) .On paper pack, the following requirements are requested.

7.1 Dimensions and Mark

NO.	Name	Quantity
1	Package	1
2	Box	2
3	Inner Box	40
4	Belt	2.9 m
5	Adhesive tape	1.2 m
6	Label	1
7	Certificate of approval	1

7.2 Section of Package

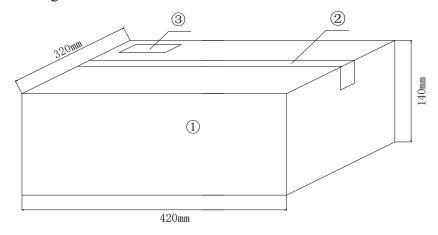
Package is made of corrugated paper with thickness of 0.8cm.Package has 2 boxes, each has 20 inner boxes.

7.3 Quantity of Package

Per plastic bag

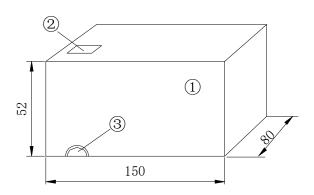
Per inner box

Per package


500 pieces

3 plastic bag

40 inner boxes


(60000 pieces of piezoelectric ceramic part)

7.4 Inner Package

NO.	Name	Quantity
1	Inner package	1
2	Adhesive tape	1.2 m
3	Label	1

7.5 Inner Box Dimensions

NO.	Name	Quantity
1	Inner Box	1
2	Label	1
3	QC Label	1

8. EIAJ Monthly Code

2015/2017/2019/2021		2016/2018/2020/2022	
MONTH	CODE	MONTH	CODE
JAN	A	JAN	N
FEB	В	FEB	P
MAR	С	MAR	Q
APR	D	APR	R
MAY	Е	MAY	S
JUN	F	JUN	T
JUL	G	JUL	U
AUG	Н	AUG	V
SEP	J	SEP	W
OCT	K	OCT	X
NOV	L	NOV	Y
DEC	M	DEC	Z

9. OTHER

- 9.1 Caution
- 9.1.1 Don't apply excess mechanical stress to the component and terminals at soldering. Do not use this product with bend.
- 9.1.2 Do not clean or wash the component for it is not hermetically sealed.
- 9.1.3 Do not use strong acidity flux, more than 0.2wt% chlorine content, in flow soldering.
- 9.1.4 Don't be close to fire.
- 9.1.5 All kinds of re-flow soldering must not be applied on the component.
- 9.1.6 This specification mentions the quality of the component as a single unit. Please insure the component is thoroughly evaluated in your application circuit
- 9.1.7 Expire date (Shelf life) of the products is 12 months after delivery under the conditions of a sealed and an unopened package. Please use the products within 12 months after delivery. If you store the products for a long time (more than 12 months), use carefully because the products may be degraded in the solderability or rusty. Please confirm solderability and characteristics for the products regularly.
- 9.1.8 Please contact us before using the product as automobile electronic component.
- 9.2 Notice
- 9.2.1 Please return one of these specifications after your signature of acceptance.
- 9.2.2 When something gets doubtful with this specification, we shall jointly work to get an agreement