

1.2A LOW DROPOUT VOLTAGE REGULATOR

Description

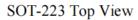
The AMS1117 series of adjustable and fixed voltage regulators are designed to provide 1.2A output current and to operatedown to1V input-to-output differential. The dropoutvoltage of the device is guaranteed maximum 1.3V at maximum output current, decreasing at lower load currents.

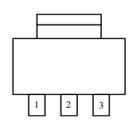
Features

Three Terminal Adjustable or Fixed Voltages* 1.5V, 1.8V, 2.5V, 2.85V, 3.3V and 5.0V

- Output Current of 1.2A
- Operates Down to 1V Dropout
- Line Regulation: 0.2% Max. Load
- Regulation: 0.4% Max.
- SOT-223

APPLICATIONS


- High Efficiency Linear Regulators
- Post Regulators for Switching Supplies
- 5V to 3.3V Linear Regulator
- Battery Chargers Active SCSI Terminators
- Power Management for Notebook
- Battery Powered Instrumentation


ABSOLUTE MAXIMUM RATINGS (Note 1)

Power Dissipation Input Voltage	Internally limited 15V
Operating Junction Temperature	
Control Section	0°C to 125°C
Power Transistor	0°C to 150°C
Storage temperature	- 65°C to +150°C
Soldering information Lead Temperature (25 sec) Thermal Resistance	265°C

SOT-223 package $\phi_{JA} = 90^{\circ}C/W^*$

* With package soldering to copper area over backside ground plane or internal power plane ϕ_{JA} can vary from 46°C/W to >90°C/W depending on mounting technique and the size of the copper area.

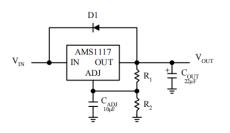
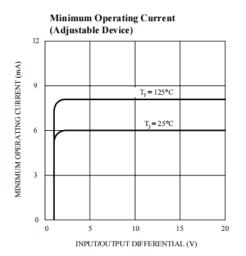
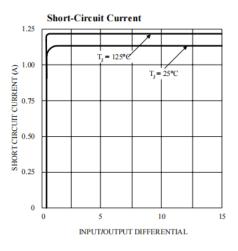
ELECTRICAL CHARACTERISTICS

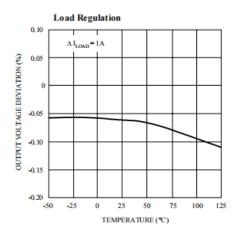
Parameter	Device	Conditions	Min	Тур	Max	Units
Reference Voltage (Note 2)	AMS1117	$\begin{split} I_{OUT} = 10 \text{ mA} \\ 10\text{mA} \leq I_{OUT} \leq 1\text{ A}, \ 1.5\text{V} \leq (\text{V}_{\text{IN}} - \text{V}_{OUT}) \leq 12\text{V} \end{split}$	1.238 1.225	1.250 1.250	1.262 1.270	V V
Output Voltage (Note 2)	AMS1117-1.5	$0 \leq I_{OUT} \leq 1A$, $3.0V \leq V_{\rm IN} \leq 12V$	1.485 1.476	1.500 1.500	1.515 1.524	v v
	AMS1117-1.8	$0 \leq I_{OUT} \leq 1A$, $3.3V \leq V_{\rm IN} \leq 12V$	1.782 1.773	1.800 1.800	1.818 1.827	v v
	AMS1117-2.5	$0 \leq I_{OUT} \leq 1 A$, $4.0 V \leq V_{\rm IN} \leq 12 V$	2.475 2.460	2.500 2.500	2.525 2.560	v v
	AMS1117-2.85	$0 \leq I_{OUT} \leq 1A$, 4.35V $\leq V_{IN} \leq 12V$	2.82 2.79	2.850 2.850	2.88 2.91	v v
	AMS1117-3.3	$0 \not \leq I_{OUT} \leq 1 A$, $4.75 V \leq V_{IN} \leq 12 V$	3.267 3.235	3.300 3.300	3.333 3.365	v v
	AMS1117-5.0	$0 \leq I_{OUT} \leq 1A$, $6.5V \leq V_{IN} \leq 12V$	4.950 4.900	5.000 5.000	5.050 5.100	V V

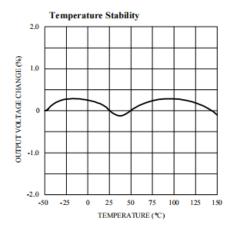
Electrical Characteristics at $I_{OUT} = 0$ mA, and $T_J = +25^{\circ}C$ unless otherwise specified.

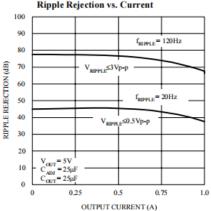
APPLICATION HINTS

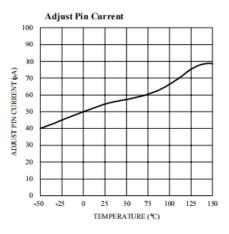
The AMS1117 series of adjustable and fixed regulators are easy to use and are protected against short circuit and thermal overloads. Thermal protection circuitry will shut-down the regulator should the junction temperature exceed 165°C at the sense point. Pin compatible with older three terminal adjustable regulators, these devices offer the advantage of a lower dropout voltage, more precise reference tolerance and improved reference stability with temperature.

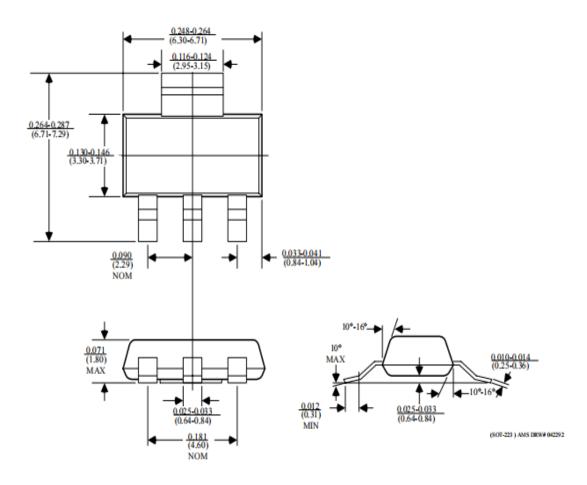





Figure 1.




TYPICAL PERFORMANCE CHARACTERISTICS





Ripple Rejection vs. Current

PACKAGE DIMENSIONS

3 LEAD SOT-223 PLASTIC PACKAGE

