Programmable Shunt Regulator

Description

The LM431SA / LM431SB / LM431SC are three–terminal the output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuit provides a sharp turn–on characteristic, making these devices excellent replacement for zener diodes in many applications.

Features

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance: 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full–Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

- 1. Ref
- 2. Anode3. Cathode
- SOT-89 CASE 528AH

į.

- 1. Cathode
- 2. Ref 3. Anode
- SOT-23FL CASE 419BD

M32 1. Ref 2. Cathode M3 1. Cathode 2. Ref

SOT-23 3. Anode CASE 318BM

2. Ref 3. Anode

ORDERING INFORMATION

Product Number	Output Voltage Tolerance	Operating Temperature	Top Mark ⁽¹⁾	Package	Shipping [†]
LM431SACMFX	2%	−25 to +85°C	43A □	SOT-23FL 3L	Tape and Reel
LM431SACM3X	-		43L ⊚	SOT-23 3L	
LM431SACM32X	-		43G ⊚	SOT-23 3L	
LM431SBCMLX	1%		43B	SOT-89 3L	
LM431SBCMFX			43B □	SOT-23FL 3L	
LM431SBCM3X	-		43M ⊚	SOT-23 3L	
LM431SBCM32X			43H ⊚	SOT-23 3L	
LM431SCCMLX	0.5%		43C	SOT-89 3L	
LM431SCCMFX			43C □	SOT-23FL 3L	
LM431SCCM3X	-		43N ⊚	SOT-23 3L	
LM431SCCM32X	-		43J ⊚	SOT-23 3L	
LM431SAIMFX	2%	-40 to +85°C	43AI	SOT-23FL 3L	
LM431SBIMFX	1%]	43BI	SOT-23FL 3L	
LM431SCIMFX	0.5%		43CI	SOT-23FL 3L	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{1.} SOT-23 and SOT-23FL have basically four-character marking except LM431SAIMFX. (3 letters for device code + 1 letter for date code) SOT-23FL date code is composed of 1 digit numeric or alphabetic week code adding bar-type year code.

Block Diagram

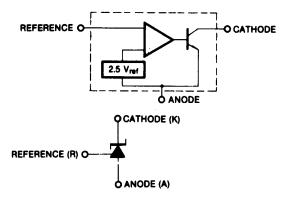


Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Para	Parameter		
V _{KA}	Cathode Voltage	Cathode Voltage		
I _{KA}	Cathode current Range (Continuous)		-100 to +150	mA
I _{REF}	Reference Input Current Range		-0.05 to +10.00	mA
$R_{\theta JA}$		ML Suffix Package (SOT-89)	220	°C/W
	Thermal Resistance Junction–Air (2, 3)	MF Suffix Package (SOT–23FL)	350	
		M32, M3 Suffix Package (SOT-23)	400	
P _D	Power Dissipation (4, 5)	ML Suffix Package (SOT-89)	560	mW
		MF Suffix Package (SOT-23FL)	350	
		M32, M3 Suffix Package (SOT-23)	310	
TJ	Junction Temperature		150	°C
т	Operating Temperature Range	All products except LM431SAIMFX	-25 to +85	°C
T _{OPR} Operating Temperature Range		LM431SAIMFX, SBIMFX, SCIMFX	-40 to +85	
T _{STG}	Storage Temperature Range		-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 2. Thermal resistance test board
 - Size: 1.6 mm x 76.2 mm x 114.3 mm (1S0P) JEDEC Standard: JESD51-3, JESD51-7.
- 3. Assume no ambient airflow.
- T_{JMAX} = 150°C; ratings apply to ambient temperature at 25°C.
 Power dissipation calculation: P_D = (T_J T_A) / R_{θJA}.

RECOMMENDED OPERATING CONDITIONS

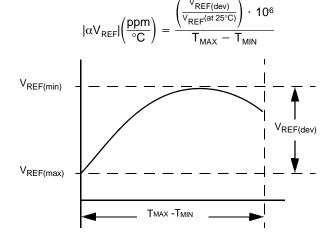
Symbol	Parameter	Min.	Max.	Unit
V_{KA}	Cathode Voltage	V_{REF}	36	V
I _{KA}	Cathode Current	1	100	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 6, Values are at $T_A = 25$ °C unless otherwise noted)

				L	M431S	A	L	M431S	В	L	.M431S	С	
Symbol	Parameter	Condition	ons	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
VREF	Reference Input Voltage	$V_{KA} = V_{REF}$, $I_{KA} = 10$) mA	2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
$\Delta V_{RFF}/\Delta T$	Deviation of Refer-	VKA = VREF, I _{KA} = 10 mA	SOT-89 SOT-23FL		4.5	17.0		4.5	17.0		4.5	17.0	mV
1121	Over- Tempera- ture	$T_{MIN} \le T_{A} \le T_{MAX}$	SOT-23		6.6	24		6.6	24		6.6	24	mV
ΔV_{RFF}	Ratio of Change in Reference Input		ΔV _{KA} = 10 V–V _{REF}		-1.0	-2.7		-1.0	-2.7		-1.0	-2.7	
ΔV _{KA}	Voltage to the Change in Cathode Voltage	I _{KA} =10 mA	ΔV _{KA} = 36 V – 10 V		-0.5	-2.0		-0.5	-2.0		-0.5	-2.0	mV/V
lref	Reference Input Current	$I_{KA} = 10 \text{ mA}, R_1 = 10 \text{ mA}$	10 KΩ, R ₂ = ∞		1.5	4.0		1.5	4.0		1.5	4.0	μΑ
ΔI _{REF} / ΔΤ	Deviation of Reference Input Current	$R_1 = 10 \text{ K}\Omega$	SOT-89 SOT-23FL		0.4	1.2		0.4	1.2		0.4	1.2	μА
	Over Full Temperature Range		SOT-23		0.8	2.0		0.8	2.0		0.8	2.0	μΑ
IKA(MIN)	Minimum Cathode Current for Regu- lation	VKA = VREF			0.45	1.00		0.45	1.00		0.45	1.00	mA
IKA(OFF)	Off –Stage Cath- ode Current	V _{KA} = 36 V, V _{REF} = 0			0.05	1.00		0.05	1.00		0.05	1.00	μΑ
ZKA	Dynamic Impedance	VKA = VREF, $I_{KA} = 1$ f \geq 1.0 kHz	to 100 mA,		0.15	0.50		0.15	0.50		0.15	0.50	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


6. LM431SAI, LM431SBI, LM431SCI: – T_{A(min)} = -40°C, T_{A(max)} = +85°C

All other pins: – T_{A(min)} = -25°C, T_{A(max)} = +85°C

ELECTRICAL CHARACTERISTICS (Continued) (Notes 7 and 8, Values are at T_A = 25°C unless otherwise noted)

		LM431SAI		LM431SBI			LM431SCI						
Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{REF}	Reference Input Voltage	$V_{KA} = V_{REF}$, I_{KA}	= 10 mA	2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
V _{REF(dev)}	Deviation of Reference Input Voltage Over–Temperature	$V_{KA} = V_{REF}$ $I_{KA} = 10$ mA, $T_{MIN} \le T_{A} \le T_{MAX}$			5	20		5	20		5	20	mV
ΔV _{REF} /	Ratio of Change in		$\Delta V_{KA} = 10 \text{ V} - V_{REF}$		-1.0	-2.7		-1.0	-2.7		-1.0	-2.7	
ΔVKEF	Reference Input Voltage to Change in Cathode Voltage	I _{KA} = 10 mA	ΔV _{KA} = 36 V – 10 V		-0.5	-2.0		-0.5	-2.0		-0.5	-2.0	mV/V
I _{REF}	Reference Input Current	$I_{KA} = 10 \text{ mA}, R_1$	=10 K Ω , R ₂ = ∞		1.5	4.0		1.5	4.0		1.5	4.0	μА
I _{REF(dev)}	Deviation of Reference Input Current Over Full Temperature Range	$I_{KA} = 10$ mA, $R_1 = 10$ K Ω , $R_2 = \infty$, $T_{MIN} \le T_A \le T_{MAX}$			0.8	2.0		0.8	2.0		0.8	2.0	μА
I _{KA(MIN)}	Minimum Cathode Current for Regulation	VKA = VREF			0.45	1.00		0.45	1.00		0.45	1.00	mA
I _{KA(OFF)}	Off -Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0			0.05	1.00		0.05	1.00		0.05	1.00	μА
ZKA	Dynamic Impedance	$V_{KA} = V_{REF}, I_{KA}$ f \geq 1.0 kHz	= 1 to 100 mA,		0.15	0.50		0.15	0.50		0.15	0.50	Ω

- LM431SAI, LM431SBI, LM431SCI: T_{A(min)} = -40°C, T_{A(max)} = +85°C
 All other pins: T_{A(min)} = -25°C, T_{A(max)} = +85°C
 The deviation parameters V_{REF(dev)} and I_{REF(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as:

where T_{MAX} – T_{MIN} is the rated operating free–air temperature range of the device.

 αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF}, respectively, occurs at the lower temperature.

Example:

 $V_{REF(dev)}$ = 4.5 mV, V_{REF} = 2500 mV at 25°C,

 $T_{MAX} - T_{MIN} = 125^{\circ}C$ for LM431SAI.

$$|\alpha V_{REF}| = \frac{\left(\frac{4.5 \text{ mV}}{2500 \text{ mV}}\right) \cdot 10^6}{125^{\circ}C} = 14.4 \text{ ppm/}^{\circ}C$$

Because minimum $V_{\mbox{\scriptsize REF}}$ occurs at the lower temperature, the coefficient is positive.

TEST CIRCUITS

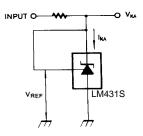


Figure 2. Test Circuit for $V_{KA} = V_{REF}$

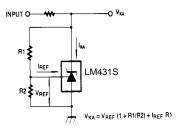


Figure 3. Test Circuit for $V_{KA} \ge V_{REF}$

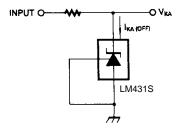


Figure 4. Test Circuit for I_{KA(OFF)}

TYPICAL APPLICATIONS

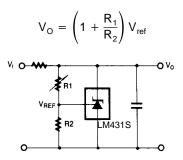


Figure 5. Shunt Regulator

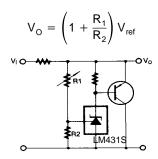


Figure 7. High Current Shunt Regulator

Figure 8. Current Limit or Current Source

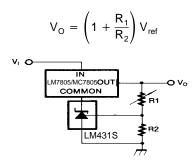


Figure 6. Output Control for Three-Terminal Fixed Regulator

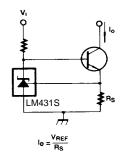


Figure 9. Constant-Current Sink

TYPICAL PERFORMANCE CHARACTERISTICS

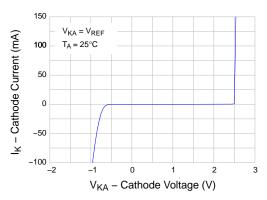


Figure 10. Cathode Current vs. Cathode Voltage

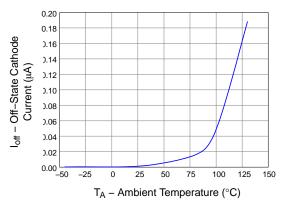


Figure 12. OFF-State Cathode Current vs. Ambient Temperature

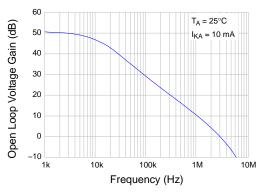


Figure 14. Frequency vs. Small Signal Voltage Amplification

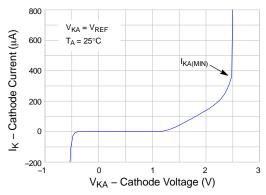


Figure 11. Cathode Current vs. Cathode Voltage

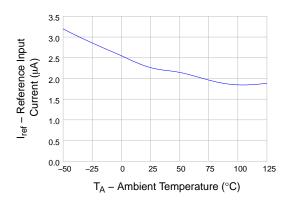


Figure 13. Reference Input Current vs. Ambient Temperature

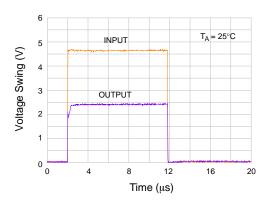


Figure 15. Pulse Response

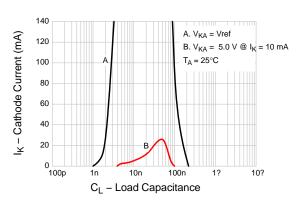


Figure 16. Stability Boundary Conditions

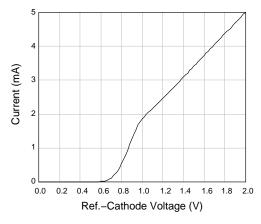


Figure 18. Reference-Cathode Diode Curve

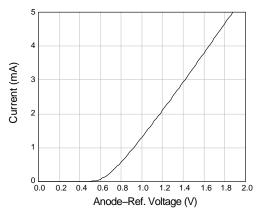


Figure 17. Anode-Reference Diode Curve

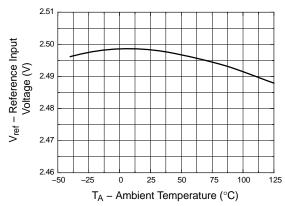
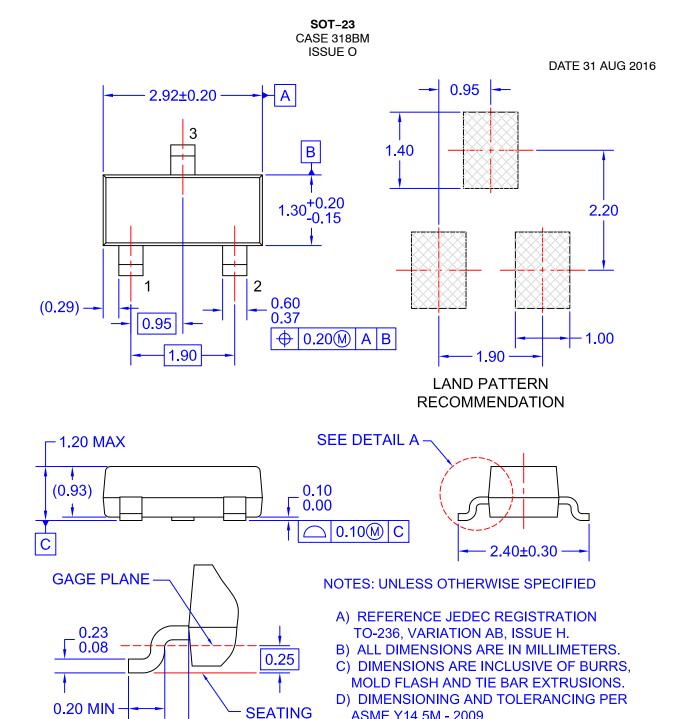
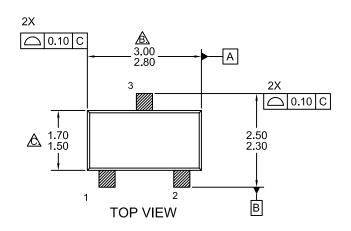



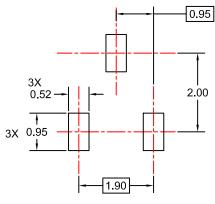
Figure 19. Reference Input Voltage vs. Ambient Temperature

DETAIL A	
SCALE: 2X	

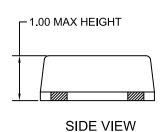
(0.55)

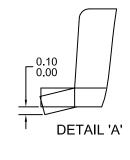
DOCUMENT NUMBER:	98AON13784G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-23	•	PAGE 1 OF 1			

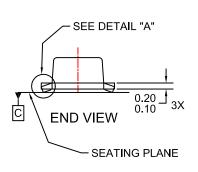

PLANE


ASME Y14.5M - 2009.

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

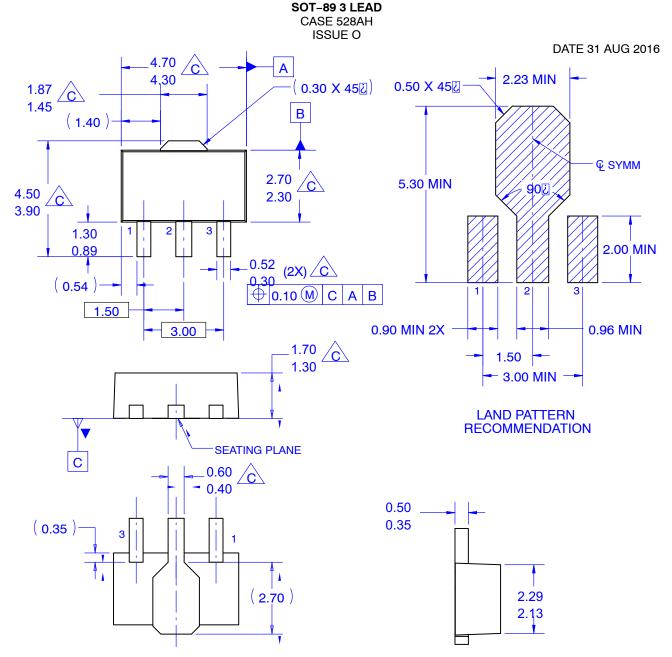

SOT-23FL CASE 419BD ISSUE O


DATE 31 AUG 2016



RECOMMENDED LAND PATTERN

NOTES:


1.90 A 0.45 3X 0.35 3X (0.40) 3X 0.68 0.48 A ⊕ 0.10M C A

- A. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15mm PER END.
- DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15mm PER SIDE.
- DIMENSIONS AAND ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH. BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- E. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08mm AND 0.15mm FROM THE LEAD TIP.
- G. LANDPATTERN RECOMMENDATION PER IPC SOTFL95P240X100-4N (ADAPTED TO 3LD)

BOTTOM VIEW

DOCUMENT NUMBER:	98AON13787G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-23FL		PAGE 1 OF 1			

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES: UNLESS OTHERWISE SPECIFIED.

A. REFERENCE TO JEDEC TO-243 VARIATION AA.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

 $\overline{m{C}}$ DOES NOT COMPLY JEDEC STANDARD VALUE.

D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSION.

E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

DOCUMENT NUMBER:	98AON13791G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOT-89 3 LEAD		PAGE 1 OF 1				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: