Power MOSFET 200 mA, 50 V

N-Channel SOT-23

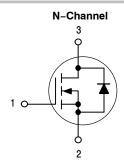
Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features

- Low Threshold Voltage (V_{GS(th)}: 0.85 V-1.5 V) Makes it Ideal for Low Voltage Applications
- Miniature SOT-23 Surface Mount Package Saves Board Space
- BVSS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	50	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	± 20	Vdc
Drain Current - Continuous @ $T_A = 25^{\circ}C$ - Pulsed Drain Current $(t_p \le 10 \ \mu s)$	I _D I _{DM}	200 800	mA
Total Power Dissipation @ T _A = 25°C	P_{D}	225	mW
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	ç
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Maximum Lead Temperature for Soldering Purposes, for 10 seconds	TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

200 mA, 50 V $R_{DS(on)} = 3.5 \Omega$

SOT-23 CASE 318 STYLE 21

J1

Μ

MARKING

Device CodeDate Code*Pb-Free Package

(Note: Microdot may be in either location)

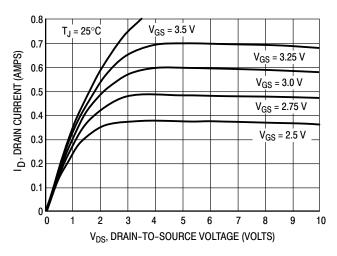
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
BSS138LT1G, BVSS138LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BSS138LT7G	SOT-23 (Pb-Free)	3,500 / Tape & Reel
BSS138LT3G, BVSS138LT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

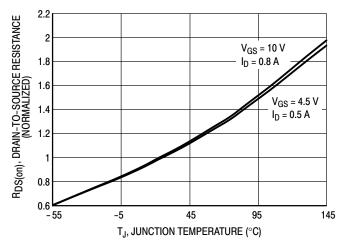
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Cha	Characteristic			Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltag (V _{GS} = 0 Vdc, I _D = 250 μAdc)	ge	V _{(BR)DSS}	50	-	_	Vdc
Zero Gate Voltage Drain Current $ \begin{array}{l} (V_{DS}=25~Vdc,~V_{GS}=0~Vdc,~25^{\circ}C)\\ (V_{DS}=50~Vdc,~V_{GS}=0~Vdc,~25^{\circ}C)\\ (V_{DS}=50~Vdc,~V_{GS}=0~Vdc,~150^{\circ}C) \end{array} $			- - -	- - -	0.1 0.5 5.0	μAdc
Gate-Source Leakage Current (V _G	$_{\rm S} = \pm 20 \text{Vdc}, \text{V}_{\rm DS} = 0 \text{Vdc})$	I _{GSS}	-	-	±0.1	μAdc
ON CHARACTERISTICS (Note 1)						
Gate–Source Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.0 \text{ mAdc})$			0.85	_	1.5	Vdc
Static Drain-to-Source On-Resistance $ (V_{GS}=2.75~Vdc,~I_D<200~mAdc,~T_A=-40^{\circ}C~to~+85^{\circ}C) \\ (V_{GS}=5.0~Vdc,~I_D=200~mAdc) $			_ _	5.6 -	10 3.5	Ω
Forward Transconductance (V _{DS} = 25 Vdc, I _D = 200 mAdc, f	9fs	100	-	-	mmhos	
DYNAMIC CHARACTERISTICS				_		
Input Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0, f = 1 MHz)	C _{iss}	-	40	50	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0, f = 1 MHz)	C _{oss}	-	12	25	
Transfer Capacitance	C _{rss}	_	3.5	5.0	-	
SWITCHING CHARACTERISTICS (Note 2)					
Turn-On Delay Time	0/ 20//40 0.0 4-1	t _{d(on)}	-	_	20	ns
Turn-Off Delay Time	(V _{DD} = 30 Vdc, I _D = 0.2 Adc,)	t _{d(off)}	_	-	20	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

2. Switching characteristics are independent of operating junction temperature.


TYPICAL ELECTRICAL CHARACTERISTICS

0.9 25°C $V_{DS} = 10 V$ 0.8 -55°C ID, DRAIN CURRENT (AMPS) 0.7 150°C 0.6 0.5 0.4 0.3 0.2 0.1 0.5 4.5 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

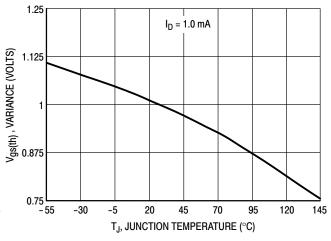
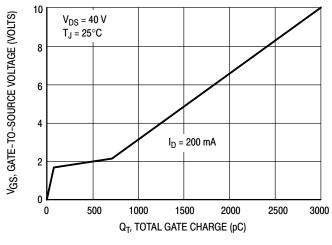



Figure 3. On–Resistance Variation with Temperature

Figure 4. Threshold Voltage Variation with Temperature

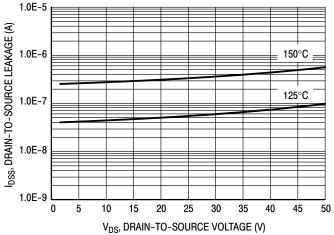
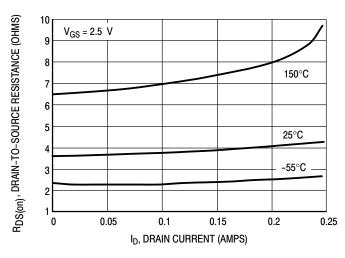
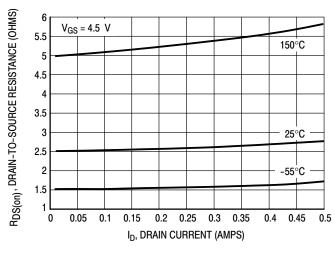



Figure 5. Gate Charge

Figure 6. IDSS


TYPICAL ELECTRICAL CHARACTERISTICS

| SOUND | SOUN

Figure 7. On-Resistance versus Drain Current

Figure 8. On-Resistance versus Drain Current

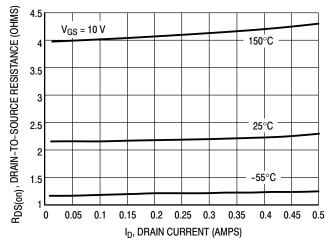
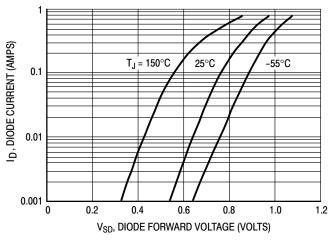



Figure 9. On-Resistance versus Drain Current

Figure 10. On-Resistance versus Drain Current

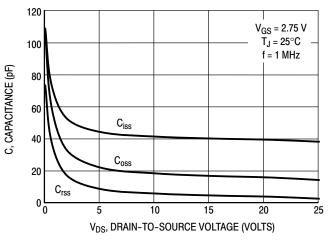


Figure 11. Body Diode Forward Voltage

Figure 12. Capacitance

TYPICAL ELECTRICAL CHARACTERISTICS

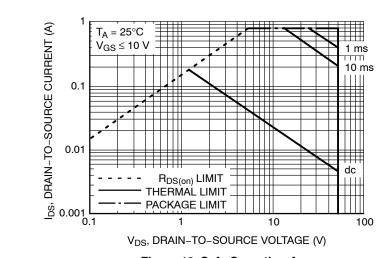
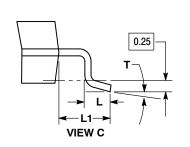
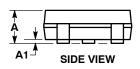
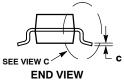


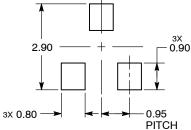
Figure 13. Safe Operating Area




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

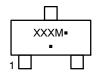

DATE 30 JAN 2018

SCALE 4:1 D - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,

	PROT	RUSIONS, OR GATE BURRS.	
--	------	-------------------------	--

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10°	0°		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE
OT (1 F O			

SOT-23 (TO-236)

STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
ANODE	SOURCE	CATHODE	CATHODE	2. DRAIN	2. GATE
CATHODE	3. GATE	CATHODE-ANODE	ANODE	3. GATE	ANODE

STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
CATHODE	CATHODE	2. ANODE	CATHODE	2. ANODE	ANODE
ANODE	CATHODE	CATHODE	ANODE	CATHODE-ANOD	E 3. GATE

STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
SOURCE	OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3 DRAIN	3 INPLIT	3 CATHODE	3. SOURCE	3. GATE	NO CONNECTION

STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE	
DOCUMENT N	UMBER: 98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DESCRIPTION:

PAGE 1 OF 1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative