

Precision Timer

Description:

NE555 is a bipolar integrated circuit that can generate high-precision timing pulses. The internal circuit consists of four parts: threshold comparator, trigger comparator, RS trigger, and output circuit. It can be composed of timing trigger circuits, pulse width modulation circuits, audio oscillators, and other circuits by connecting a small number of external resistive and capacitive devices.Packaging situation using SOP8 and DIP8

Features :

-High timing accuracy	-The maximum operating frequency can
-Strong output driving ability	reach over 500KHZ
-High temperature stability	-Compatible with TTL circuits

-The timing time can range from microseconds to hours (precise control can be achieved through external resistors and capacitors)

Application :

-Pulse width modulation

-Equipment timing, traffic light control,

-Audio pulse generator, frequency divider

access control

Pin Assignment :

Pin No.	Pin Definition	Function Description				
1	GND	grounding				
2	TRIG	trigger				
3	OUT	output				
4	REST	reset				
5	CONT	control voltage				
6	THRES	threshold				
7	DISCH	discharge				
8	Vcc	Power supply terminal				

Block Diagram :

NE555

Absolute Maximum Ratings

Parameter	Symbol	Limit value	Unit
supply voltage	Vcc	18	V
INPUT VOLTAGE	VI (thre, trig, cont, reset)	VCC	V
output current	lo	± 220	mA
Dissipated power	PD	400	mW
operation temperature	Та	-20 ~ 70	°C
storage t nperature	Ts	-65 ~ 150	°C
welding temperature	Tw	260,10s	°C

Note: Limit parameters refer to the limit values that cannot be exceeded under any conditions. If this limit value is exceeded, it may cause physical damage such as product deterioration; At the same time, it cannot be guaranteed that the chip can operate normally when approaching the limit parameters.

Recommended electrical parameters

Parameter	Symbol	Value	Unit
supply voltage	VCC	4.5 ~ 15	V
Max input voltage	Vth, Vtrig, Vcont, Vreset	VCC	V
output current	lo	± 200	mA

Electrical characteristics (TA=25 , Unless otherwise specified)

Parameter	Symbol		Test conditions	MIN	TYP	MAX	Unit
working voltage	Vcc			4.5	-	15	V
		Vcc=5V,R	L=∝,VO=VOL	-	3	6	mA
	laa	Vcc=5V,R	L=∝,VO=VOH	-	1.5	5	mA
working current	ICC	VCC=15V	/,RL=∝,VO=VOL	-	8	15	mA
	18	VCC=15V	/,RL=∝,VO=VOH	-	6	13	mA
	Val	VCC=15V	1	-	10	11	V
Control terminal voltage	VCI	VCC=5V		-	3.3	4	V
Threshold voltage terminal	\/	VCC=15V	1	-	10	11.2	V
voltage	VIH	VCC=5V		<u>-</u>	3.3	4.2	V
Threshold voltage and current	ITH *note1	VCC=15V	/,VTH=0V	-	-	250	nA
	V	VCC=15V	1	-	5	5.6	V
Trigger terminal voltage	VTRIG	VCC=5V			1.6	2.2	V
Trigger terminal current	Itrig	VCC=15V	/,VTRIG =0V,		-	2	uA
Reset terminal high voltage	Vreseth	VCC=5V		1.5	-	VCC	V
Low voltage at reset end	Vresetl	VCC=5V		GND	-	0.5	V
Poset terminal surrent	1	VRESET =0.4	4V,Vcc=15V	-	0.13	0.4	mA
Reset terminal current	RESET	VRESET = 0V	/,Vcc=15V	(-	0.3	1.5	mA
		VCC=15V	/,IL =-5mA	-	0.02	0.25	
		VCC=15V	/,IL =-50mA	-	0.04	0.75	- V
Output Low Voltage	Vol	VCC=15V	/,IL =-100mA	-	2	2.5	
Output Low Voltage		VCC=15V	/,IL =-200mA	-	2.8	-	
		VCC=5V,	L =-5mA	5 0	0.08	0.35	
		VCC=5V,	L =-8mA		0.15	0.4	
		VCC=15V,IL =-100mA		12.75	13.3	-	
Output High Voltage	Vон	VCC=15V	/,IL =-200mA	-	12.2	-	V
		VCC=5V,	L =-100mA	2.75	3.3	-	
Discharge tube closing	Idis (off)	VO=VOH	,Vdis = 10V	-	-	100	nA
leakage current	David 2000 - 45 - 928				140	400	
Discharge tube saturation	Vdis _(sat)	VO=VOL	VCC=15V,Idis=15mA	-	140	480	mv
voltage			VCC=5V,IdIS=4.5mA	-	100	200	mv
Output rising edge time	t r	CL=15pF	1	-	80	300	ns
Output falling edge time	t⊧	CL=15pF	,	-	50	300	ns
	Ts*note2		VCC=15V, initial error	-	1	-	%
timing error	Tv	RA=2kΩ	Drift with power supply	-	0.1	-	%/V
(Monostable state)		to100kΩ	voltage (4.5V~15V)				, oj v
	Tt	C=0.1uF	VCC=15V, drift with	-	150	-	ppm°C
			temperature (0-60 °C)		-		
	Ts* _{note2} Tv	RA,	VCC=15V, initial error	-	1		%
timing error		RB=1kΩ	Urift with power supply	-	0.1	-	%/V
(Non steady state)		to100kΩ	VCC=15V. drift with		2000-000-000		Subsequence of
	Tt	C=0.1uF	temperature (0-60 °C)	-	150	-	ppm°C

Notes : 1. At Vcc=15V, the maximum value of Ra+Rb is 10M $\,$; At Vcc=5V, the maximum value of Ra +Rb is 3.4M $\,$.

2. Timing error is defined as the difference between the measured value and the average value of the random sample. At the same time, timing errors are affected by errors in external capacitors and resistors.

Typical Applications

1, Monostable state:

In monostable mode, when the input level reaches 1/3 Vcc, the circuit triggers the output high level, and after holding t=1.1 * RA * C for a time, the output becomes low level . During time t, regardless of the input level, the output state is not affected. The circuit and waveform are shown in Figures 1 and 2.

t = 0.1 ms / div

INPUT = 2.0V/div

Figure 2 Monostable waveform diagram

2、Non steady state:

In non-stationary mode, the circuit will automatically trigger and output as a square wave multivibrator. The output square wave frequency and duty cycle can be adjusted by the size of RA, RB, and C. The triggering mode, charging and discharging time, and frequency are independent of the power supply voltage. The circuit and waveform are shown in Figures 3 and 4.

Output high-level pulse width th=0.693 * (RA+RB) * C; Low level pulse width tl=0. 693 * RB * C; T=th+tl=0.693 (RA+2RB) C; Frequency f=1/T=1.44/(RA * C+2RB * C); Duty cycle D=tl/T=RB/(RA+2RB).

3、Pulse width modulation:

When the timer is connected in monostable mode and triggered by a continuous pulse train applied to pin 2, the output pulse width can be modulated by the signal applied to pin 5. See Figures 5 and 6.

Figure 5. Pulse width modulation circuit

Figure 6 Pulse width modulation circuit waveform diagram

4、Pulse-position modulation:

When the timer is connected in Figure 7, the output pulse position can be modulated by the signal applied to pin 5. See Figures 7 and 8.

Figure 7 Pulse-position modulation circuit

Figure 8 Pulse-position modulation circuit waveform diagram

NE555

PACKAGE MECHANICAL DATA SOP8

Dimensions In Millimeters(SOP8)									
Symbol:	А	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0 °	0.35	1 07 000
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 650

DIP8

Dimensions In Millimeters(DIP8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54.050
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.34 830