

SIT3088E

3.0V~5.5V, 15KV HBM ESD-Protected, 14Mbps Half-Duplex RS485/RS422 Transceiver

OUTLINE

FEATURES

- ➢ 3.0V∼5.5V Wide Power Range, Half-Duplex
- ESD Protection for RS-485 I/O Pins ±15kV, Human Body Model
- ▶ Bus Fault Tolerance and Withstand Voltage Reach ±15V
- > 1/8 Unit Load, Allow Up to 256 Transceivers on the Bus
- Driver Short-Circuit Output Protection
- Thermal-Shutdown Function
- Low Power Off Function
- Receiver Open-Circuit Failure Protection
- Strong Anti-Noise Ability
- Integrated Transient Voltage Suppression Function
- Data transmission up to 14mbps in an electric noise environment

DESCRIPTION

Provide green and environmentally friendly lead-free package

PIN CONFIGURATION

SIT3088E is a RS-485 transceiver with $3.0V \sim 5.5V$ wide power supply, bus port ESD protection capacity of over 15kV HBM, bus withstand voltage range of $\pm 15V$, half duplex, low power consumption, and fully meet the requirements of TIA / EIA-485 standard.

SIT3088E includes a driver and a receiver, both of which can be enabled and closed independently. When both are disabled, both the driver and the receiver output are high resistance state. SIT3088E has 1/8 load, which allows 256 SIT3088E transceivers to be connected to the same communication bus. It can realize error-free data transmission up to 14mbps.

SIT3088E has a working voltage range of 3.0~5.5V, and has the functions of fail safe, over temperature protection, current-limiting protection, over-voltage protection, etc.

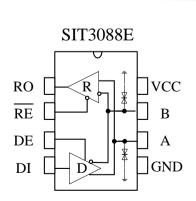


Figure 1 SIT3088E Pin Configuration

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	VCC	+7	V
Control Input Voltage	/RE, DE, DI	-0.3~VCC+0.5	V
Receiver Input Voltage	A, B	-15~+15	V
Receiver Output Voltage	RO	-0.3~VCC+0.5	V
Operating Temperature Ranges		-40~125	°C
Storage Temperature Range		-60~150	°C
Lead Temperature		300	°C
	SOP8	470	mW
Continuous Power Dissipation	MSOP8	830	mW
	DIP8	700	mW

The maximum limit parameters means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal opration of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

PINNING

PIN	SYMBOL	DESCRIPTION
1	RO	Receiver Output. When /RE is low and if A - B \geq -10mV, RO will be high; if A - B \leq -200mV, RO will be low.
2	/RE	Receiver Output Enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low.Drive /RE high and DE low to enter low-power shutdown mode.
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
5	GND	Ground
6	А	non-inverting Receiver Input and non-inverting Driver Output
7	В	Inverting Receiver Input and Inverting Driver Output
8	VCC	Positive Supply

DRIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Differential Driver Output (No load)	V _{OD1}		3		5.5	V
Differential Driver	V _{OD2}	Figure 2, $RL = 54 \Omega$, VCC=3.3V	1.5		VCC	V
Output	V OD2	Figure 2, $RL = 54 \Omega$, VCC=5V	1.5		VCC	v
Change in Magnitude of Driver Differential Output Voltag(NOTE1)	ΔV_{OD}	Figure 2, $RL = 54 \Omega$			0.2	V
Driver Common-Mode Output Voltage	V _{OC}	Figure 2, $RL = 54 \Omega$			3	V
Change in Magnitude of Common-Mode Output Voltage (NOTE1)	ΔV_{OC}	Figure 2, $RL = 54 \Omega$			0.2	V
Input High Voltage	V_{IH}	DE, DI, /RE	2.0			V
Input Low Voltage	V_{IL}	DE, DI, /RE			0.8	V
Logic Input Current	I _{IN1}	DE, DI, /RE	-2		2	μΑ
Output short-circuit current, short-circuit to high	I _{OSD1}	short-circuit to 0V~12V			250	mA
Output short-circuit current, short-circuit to low	I _{OSD2}	short-circuit to -7V~0V	-250			mA
Over temperature shutdown threshold temperature				140		°C
Overtemperature shutdown hysteresis temperature				20		°C

(Unless otherwise noted, Temp= $T_{MIN} \sim T_{MAX}$, Temp=25°C)

NOTE1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

RECEIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
	Ţ	DE = 0 V, VCC=0 或 3.3/5V V _{IN} = 12 V			125	μΑ
Input current (A, B)	I _{IN2}	DE = 0 V, VCC=0 或 3.3/5V V _{IN} = -7 V	-100			μΑ
Positive input threshold voltage	V_{IT^+}	$-7V\!\leq\!V_{CM}\!\leq\!12V$			-10	mV
Reverse input threshold voltage	V _{IT-}	$-7V \! \leq \! V_{CM} \! \leq \! 12V$	-200			mV
Input hysteresis voltage	V _{hys}	$-7V \! \leq \! V_{CM} \! \leq \! 12V$	10	30		mV
Receiver Output High Voltage	V _{OH}	$I_{OUT} = -2.5 \text{mA},$ $V_{ID} = +200 \text{ mV}$	VCC-1.5			V
Receiver Output Low Voltage	V _{OL}	$I_{OUT} = +2.5 \text{mA},$ $V_{ID} = -200 \text{ mV}$			0.4	V
Three-State Output Current at Receiver	I _{OZR}	$0.4 \mathrm{V} < \mathrm{V}_{\mathrm{O}} < 2.4 \mathrm{V}$			±1	μΑ
Receiver Input Resistance	$R_{\rm IN}$	$-7V\!\leq\!V_{CM}\!\leq\!12V$	96			kΩ
Receiver Short-Circuit Output Current	I _{OSR}	0 V≤V₀≤VCC	± 8		±90	mA

(Unless otherwise noted, Temp= $T_{MIN} \sim T_{MAX}$, Temp=25°C)

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
	I	/RE=0V, DE = 0 V, VCC=3.3V		240	650	μΑ
Supply Current	I _{CC1}	/RE=0V, DE = 0 V VCC=5V		270	750	μΑ
	I _{CC2}	/RE=VCC, DE=VCC,		250	650	μΑ

(多二) 芯カ	特	3.0V~5.5V, 15KV HBM ESE	9-Protected, 14Ml	bps Half-Duplex		「3088E Fransceiver
		VCC=3.3V				
		/RE=VCC, DE=VCC, VCC=5V		280	750	μΑ
Shutdown current	T	/RE=VCC, DE=0V, VCC=3.3V		0.2	10	μΑ
Shutdown current	I _{shdn}	/RE=VCC, DE=0V, VCC=5V		0.2	10	μΑ

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Driver differential Output delay	t _{DD}	$R_L = 60 \Omega$,		20	40	ns
Driver differential output Transition time	t _{TD}	$C_{L1}=C_{L2}=100 \text{pF}$ (figure 3 \checkmark 4)		12	28	ns
Drive propagation delay From low to high	t _{PLH}			20	40	ns
Drive propagation delay From high to low	t _{PHL}	$R_{L} = 27 \Omega,$ (figure 3, 4)		20	40	ns
t _{PLH} -t _{PHL}	t _{PDS}			1	8	ns
Driver Enable to Output High	t _{PZH}	$R_L = 110\Omega$,			55	ns
Driver Enable to Output low	t _{PZL}	(figure5, 6)			55	ns
Driver Disable Time from Low	t _{PLZ}	$R_{L} = 110\Omega$,			85	ns
Driver Disable Time from high	t _{PHZ}	(figure $5, 6$)			85	ns
In Shutdown mode, Enable to Output High	t _{DSH}	$R_{L} = 110\Omega,$ (figure 5, 6)		20	100	ns
In Shutdown mode, Enable to Output low	t _{DSL}	$R_L = 110\Omega$, (figure 5, 6)		20	100	ns

RECEIVER SWITCHING CHARACTERISTICS

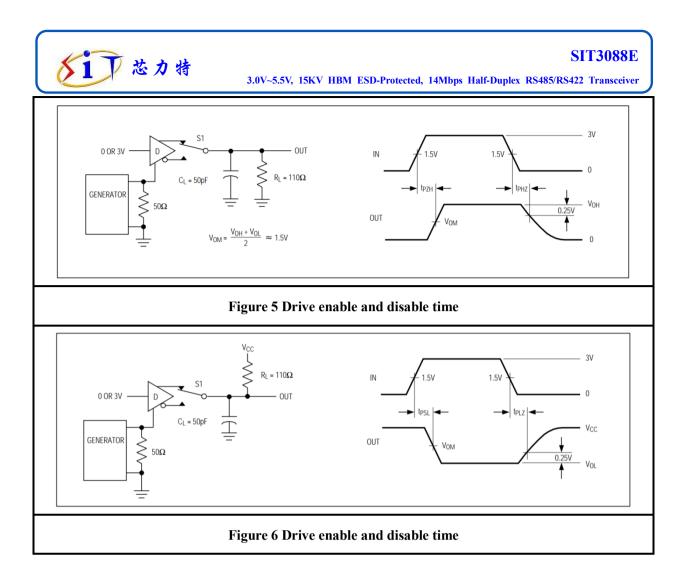
PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Receiver Input to output from low to high	t _{RPLH}			60		ns
Receiver Input to output from high to low	t _{RPHL}	C _L =15pF Figure7 & Figure8		60		ns
$ \mathbf{t}_{\mathrm{RPLH}} - \mathbf{t}_{\mathrm{RPHL}} $	t _{RPDS}			3	10	ns
Receiver Enable to Output Low	t _{RPZL}	C _L =15pF Figure7& Figure 8		15	40	ns
Receiver Enable to Output high	t _{RPZH}	C _L =15pF Figure7 & Figure8		15	40	ns
Receiver Disable Time from Low	t _{PRLZ}	C _L =15pF Figure7 & Figure8		25	55	ns
Receiver Disable Time from high	t _{PRHZ}	C _L =15pF Figure7 & Figure8		25	55	ns
In Shutdown mode, Enable to Output High	t _{RPSH}	C _L =15pF Figure7 & Figure8		150	500	ns
In Shutdown mode, Enable to Output low	t _{RPSL}	C _L =15pF Figure7 & Figure8		150	500	ns
Time to Shutdown	t _{SHDN}	NOTE2	50		300	ns

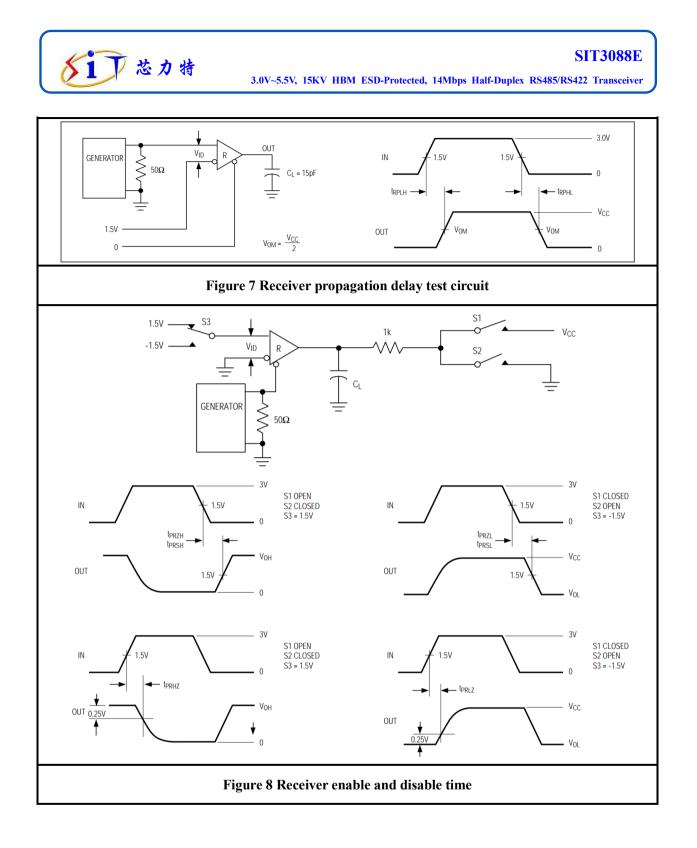
NOTE2: If the enable inputs are RE=high and DE=low for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 300ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

Driver Function						
CONT	ROL	ROL INPUT		PUT		
/RE	DE	DI	Α	В		
Х	1	1	Н	L		
X	1	0	L	Н		
0	0	Х	Z	Z		
1	1 0 X Z(shutdown)					
	X=irrelevant; Z=high impedance					

	Receiver Function					
CON	FROL	INPUT	OUTPUT			
/RE	DE	A-B	RO			
0	Х	≥-10mV	Н			
0	Х	≤-200mV	L			
0	Х	Open/short circuit	Н			
1	Х	Х	Z			
	X=irrelevant;	Z=high impedan	ce			




SIT3088E

3.0V~5.5V, 15KV HBM ESD-Protected, 14Mbps Half-Duplex RS485/RS422 Transceiver

TEST CIRCUIT

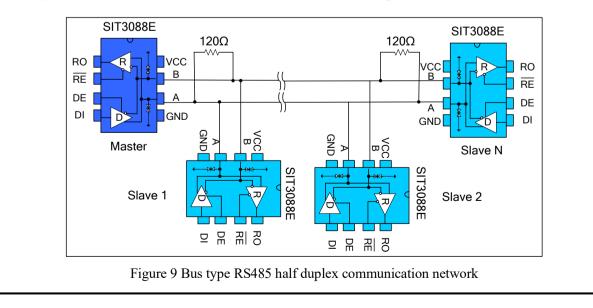
SIT3088E

ADDITIONAL DESCRIPTION

1 Sketch

SIT3088E is a half-duplex high-speed transceiver with $3.0V \sim 5.5V$ wide power supply, bus port ESD protection capacity of more than 15kV HBM, bus DC withstand voltage of more than $\pm 15V$, used for RS-485/RS-422 communication, including a driver and receiver. It has the functions of fail-safe, over-voltage protection, over-current protection and over temperature protection. SIT3088E realizes error-free data transmission up to 14mbps.

2 Allowing up to 256 Transceivers on the Bus


The input impedance of the standard RS485 receiver is $12k\Omega$ (1 unit load), and the standard driver can drive up to 32 unit loads. The receiver of SIT3088E transceiver has 1/8 unit load input impedance (96k Ω), which allows up to 256 transceivers to be connected on the same communication bus in parallel. These devices can be combined arbitrarily or with other RS485 transceivers. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

3 Driver output protection

Tow mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, over-current protection, fast short circuit protection in the mode voltage range (refer to typical operating characteristics). Second, when the temperature of the tube core exceeds 140° C, the output of the driver is forced into the high resistance state.

4 Typical Applications

4.1Bus Networking: SIT3088E RS485 transceiver is designed for bidirectional data communication on multi-point bus transmission line. Figure 9 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4000 feet. In order to reduce reflection, terminal matching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible.

4.2 Hand in hand Networking: also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The wiring mode is that the main control equipment and a plurality of slave control equipment form a hand-held connection mode, as shown in Figure 10, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

1 芯力特

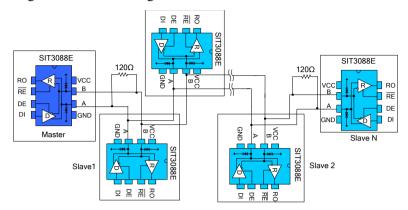
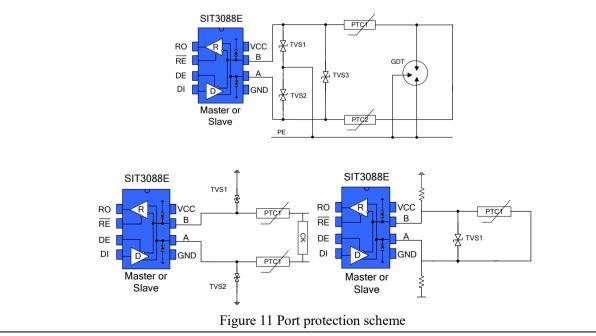
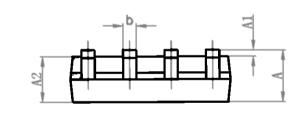
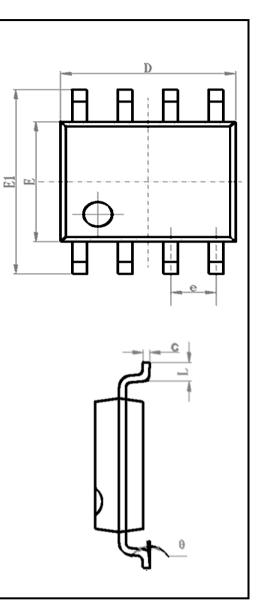



Figure10 Hand in hand RS485 half duplex communication network

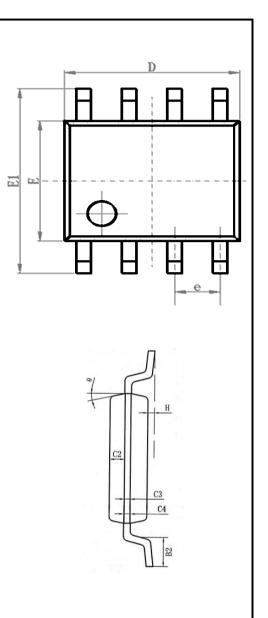

4.3 Bus port protection: in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Figure 11 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A,B port to the protective ground, TVS devices in parallel with A,B port, thermistor in series with A,B port, gas discharge tube in parallel to the protective ground; the second is the scheme of three-level protection by connecting TVS in parallel with A,B port to the ground, thermistor in series with A,B port, and varistor in parallel with A,B port; the third is the scheme of three-level protection by connecting TVS between A & B, A or B port connecting thermistor.



1 芯力特

SOP8 DIMENSIONS

	PACKAGE SIZE					
SYMBOL	MIN./mm	TYP./mm	MAX./mm			
А	1.50	1.60	1.70			
A1	0.1	0.15	0.2			
A2	1.35	1.45	1.55			
b	0.355	0.400	0.455			
D	4.800	4.900	5.00			
Е	3.780	3.880	3.980			
E1	5.800	6.000	6.200			
e		1.270BSC				
L	0.40	0.60	0.80			
с	0.153	0.203	0.253			
θ	-2°	-4°	-6°			



SIT3088E

MSOP8 /8µMAX / VSSOP8 DIMENSIONS

SYMBOL	MIN./mm	AGE SIZE TYP./mm	MAX./mm
А	2.90	3.0	3.10
A1	0.28		0.35
A2		0.65TYP	
A3		0.375TYP	
В	2.90	3.0	3.10
B1	4.70		5.10
B2	0.45		0.75
С	0.75		0.95
C1			1.10
C2		0.328 TYP	
C3		0.152	
C4	0.15		0.23
Н	0.00		0.09
θ		12°TYP	
- ^{C1}			

SIT3088E

DIP8 DIMENSIONS

Package size				
SYMBOL	MIN./mm	TYP./mm	MAX./mm	
А	9.00	9.20	9.40	
A1	0.33	0.45	0.51	
A2	2.54TYP			
A3	1.525TYP			
В	8.40	8.70	9.10	
B1	6.20	6.40	6.60	
B2	7.32	7.62	7.92	
С	3.20	3.40	3.60	
C1	0.50	0.60	0.80	
C2	3.71	4.00	4.31	
D	0.20	0.28	0.36	
L	3.00	3.30	3.60	

 \square

SIT3088E

ORDERING INFORMATION

В

TYPE NUMBER	TEMPERATURE	PACKAGE
SIT3088EESA	-40°C~125℃	SOP8
SIT3088EEUA	-40°C~125℃	MSOP8/VSSOP8/8µMAX
SIT3088EEPA	-40°C~125°C	DIP8
SIT3088ETK	-40°C~125℃	HVSON8/DFN3*3-8

Tapered package is 2500 pcs/reel. The HVSON8/DFN3*3-8 package is 5000 pcs/reel.