

General Description

The JSM-MAX485 is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver. The driver slew rates of the JSM-MAX485 is not limited, allowing them to transmit up to 2.5Mbps.

These transceivers draw between 120µA and 500µA of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. The JSM-MAX485 is designed for half-duplex applications.

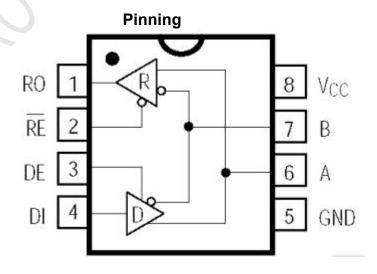
Features

Low Quiescent Current: 300µA

-7V to +12V Common-Mode Input Voltage Range

Three-State Outputs

30ns Propagation Delays, 5ns Skew


Full-Duplex and Half-Duplex Versions Available

Operate from a Single 5V Supply

Allows up to 32 Transceivers on the Bus

Data rate: 2,5 Mbps

Current-Limiting and Thermal Shutdown for Driver Overload Protection

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC) 12V Control Input Voltage -0.5V to (VCC + 0.5V) Continuous Power Dissipation (TA= +70°C)

Driver Input Voltage (DI) -0.5V to (VCC+ 0.5V) 8-Pin SO (derate 5.88mW/°C above +70°C)

471mW

Driver Output Voltage (A, B) -8V to +12.5V Operating Temperature Ranges0°C to +70°C Receiver Input Voltage (A, B) -8V to +12.5V Storage Temperature Range -65°C to +160°C

Receiver Output Voltage (RO) -0.5V to (VCC+0.5V) Lead Temperature (soldering, 10sec) +300°C

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Differential Driver Output (no load)	V _{OD1}		5		5	V	
Differential Driver	V _{OD2}	R = 50 Ω (RS-422)	R = 50 Ω (RS-422)				V
Output (with load)	V OD2	$R = 27 \Omega \text{ (RS-485)},$	Figure 4	1.5		5	V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔV _{OD}	R = 27 Ω or 50 Ω , F			0.2	V	
Driver Common-Mode Output Voltage	V _{oc}	R = 27Ω or 50Ω , F			3	V	
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	Δ V _{OD}	R = 27 Ω or 50 Ω , Fig.			0.2	V	
Input High Voltage	V _{IH}	DE, DI, RE	2.0			V	
Input Low Voltage	V _{IL}	DE, DI, RE				0.8	V
Input Current	I _{IN1}	DE, DI, RE				±2	μΑ
Input		DE = 0V;				1.0	
Current (A, B)	I _{IN2}	$V_{CC} = 0V \text{ or } 5.25V,$	V _{IN} = -7V			-0.8	mA
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ VCM ≤ 12V		-0.2		0.2	V
Receiver Input Hysteresis	ΔV _{TH}	V _{CM} = 0V			70		mV
Receiver Output High Voltage	V _{OH}	I _O = -4mA, VID = 200mV		3.5			V
Receiver Output Low Voltage	V _{OL}	I _O = 4mA, VID = -200mV				0.4	V
Three-State (high impedance) Output Current at Receiver	l _{OZR}	$0.4V \leq V_O \leq 2.4V$				±1	μΑ
Receiver Input Resistance	R _{IN}	$-7V \le V_{CM} \le 12V$		12			$\mathbf{k} \Omega$

 $(V_{CC} = 5V \pm 5\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}) \text{ (Notes 1, 2)}$

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 5V \pm 5\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
No Lond Complete Company		DE = VCC		500	900	
No-Load Supply Current (Note 3)	I _{cc}	RE = $0V$ or V_{CC} DE = $0V$		300	500	μA
Driver Short-Circuit Current,	I _{OSD1}	-7V ≤ V _O ≤12V (Note 4)	35		250	mA
V _O = High						
Driver Short-Circuit Current,	I _{OSD2}	$-7V \le V_O \le 12V \text{ (Note 4)}$	35		250	mA
V _O = Low						
Receiver Short-Circuit Current	I _{OSR}	$0V \leq V_O \leq V_{CC}$	7		95	mA

SWITCHING CHARACTERISTICS

(V_{CC} = 5V ±5%, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Input to Output	t _{PLH}	$R_{DIFF} = 54 \Omega$,	10	30	60	ns	
Driver Input to Output	t _{PHL}	C _{L1} = C _{L2} = 100pF	10	30	60		
Driver Output Skew to Output	t _{SKEW}	R_{DIFF} = 54 Ω , $CL1$ = $CL2$ = 100pF		5	10	ns	
Driver Enable to Output High	t _{zH}	C _L = 100pF, S2 closed		40	70	ns	
Driver Enable to Output Low	t _{ZL}	C _L = 100pF, S1 closed		40	70	ns	
Driver Disable Time from Low	t _{LZ}	C _L = 15pF, S1 closed		40	70	ns	
Driver Disable Time from High	t _{HZ}	C _L = 15pF, S2 closed		40	70	ns	
tPLH - tPHL Differential	t _{SKD}	$R_{DIFF} = 54 \Omega$,		13		ns	
Receiver Skew		C _{L1} = C _{L2} = 100pF					
Receiver Enable to Output Low	t _{ZL}	C _{RL} = 15pF, S1 closed		20	50	ns	
Receiver Enable to Output High	t _{zH}	C _{RL} = 15pF, S2 closed		20	50	ns	
Receiver Disable Time from Low	t_{LZ}	C _{RL} = 15pF, S1 closed		20	50	ns	
Receiver Disable Time from High	t _{HZ}	C _{RL} = 15pF, S2 closed		20	50	ns	
Maximum Data Rate	f _{MAX}		2.5			Mbps	

Operation timing diagrams of JSM-MAX485.

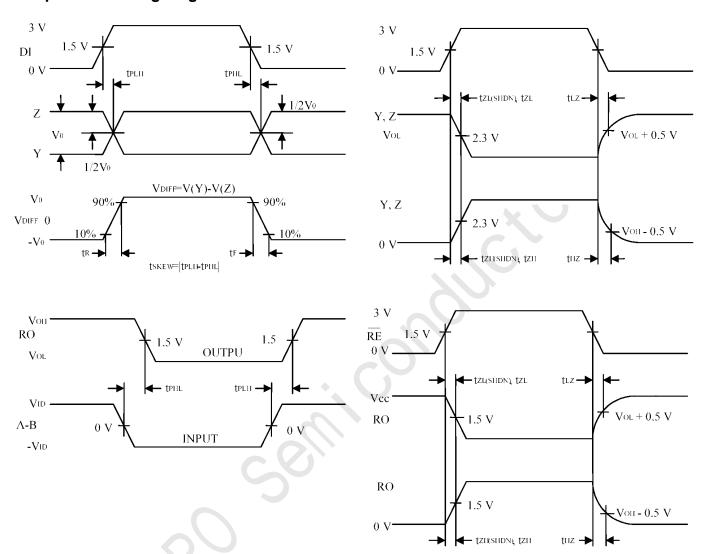


Table of JSM-MAX485 operation.

Transmiss	sion				Receipt				
	Inputs			Outputs	Inputs			Outputs	
RE	DE	DI	Z	Y	RE	DE	A-B	RO	
Χ	1	1	0	1	0	0	+0.2V	1	
Χ	1	0	1	0	0	0	-0.2V	0	
0	0	Х	Z	Z	0	0	open	1	
1	0	Х	Z	Z	1	0	X	Z	

X-don't care

Z-high resistance

PackageDimension

SOP8

Symbol	Dimensions i	n Millimeters	Dimensions in Inches		
	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	(BSC)	0.050 (BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	