

3.3V High-Speed CAN Transceiver with Diagnostic Loopback

FEATURES

- Operates with a single 3.3V supply;
- ➢ Compatible with ISO 11898-2 standard;
- Bus pin ESD protection exceeds ±12kV Human Body Model (HBM);
- Allows up to 120 nodes to be connected on a bus;
- Adjustable driver transition times for improved emissions performance;
- \blacktriangleright Low current standby mode: 650µA;
- Designed for data rates up to 1Mbps;
- Thermal shutdown protection;
- Open circuit fail-safe design;
- Glitch-free power-up and power-down protection for hot plugging applications

OUTLINE

Provide green and environmentally friendly lead-free package

SIT65HVD233

DESCRIPTION

The SIT65HVD233 is an interface chip used between the CAN protocol controller and the physical bus. It is designed for use with the 3.3V microprocessors, microcontrollers and digital signal processors with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and temperature control (HVAC), telecom and base station control and status and other fields. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Supply voltage	V _{cc}		3	3.6	V
Maximum transmission rate	$1/t_{bit}$	Non-return-to-zero code	1		Mbaud
CANH, CANL input or output voltage	V _{can}		-36	+36	V
Bus differential voltage	V_{diff}		1.5	3.0	V
Virtual junction temperature	T _{amb}		-40	125	°C

REC V1.6 2019.12

PIN CONFIGURATION

LIMITING VALUES

Parameter	Symbol	Size	Unit
Supply voltage	V _{CC}	-0.3~+6	V
DC voltage on D/R pins	D, R	-0.5~VCC+0.5	V
Bus side input voltage	CANL, CANH	-36~36	V
Transient voltage on pins 6, 7	V_{tr}	-100~+100	V
Receiver output current, I_0		-11~11	mA
Storage temperature range		-40~150	°C
Ambient temperature range		-40~125	°C
Welding temperature range		300	°C
Continuous nowar consumption	SOP8	400	mW
Continuous power consumption	DIP8	700	mW

The maximum limit parameter value means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. Continuous operation of the device under the maximum allowable rating may affect the reliability of the device. The reference point of all voltages is ground.

PINNING

Pin number	Pin name	Pin function
1	D	CAN transmit data input (low level in the dominant bus state; high level in the recessive bus state), also known as TXD, driver input
2	GND	Ground connection
3	VCC	Transceiver 3.3V supply voltage
4	R	CAN receive data output (low level in the dominant bus state; high level in the recessive bus state), also known as RXD, driver output
5	LBK	Loopback mode input pin
6	CANL	Low level CAN bus line
7	CANH	High level CAN bus line
8	R _s	 Mode selection pin: strong pull-down to GND = high-speed mode; strong pull-up to VCC = low power consumption mode; pull down to GND through a 10kΩ to 100kΩ resistor = slope control mode.

BUS TRANSMITTER DC CHARACTERISTICS

Symbol	Paran	neter	Test conditions	Min	Тур	Max	Unit
	Output	CANH	VI=0V, R_s =0V, R_L =60 Ω	2.45		VCC	X 7
V _{O(D)}	(dominant)	CANL	(See Figure 1, Figure 2)	0.5		1.25	V
Vana	Differential output		VI=0V, R_s =0V, R_L =60 Ω (See Figure 1)	1.5	2	3	V
• OD(D)	voltage (do		VI=0V, R_L =60 Ω , R_S =0V (See Figure 3)	1.2	2	3	V
N7	Output	CANH	VI=3V, $R_s=0V$, $R_L=60\Omega$		2.3		X 7
V _{O(R)}	voltage (recessive)	CANL	(See Figure 1)		2.3		V
Von	R) Differential output voltage (recessive)		$VI=3V, R_S=0V$	-0.12		0.012	V
• OD(R)			VI=3V, R _s =0V, no load	-0.5		0.05	V
I _{IH}	High level : current	input	VI=2V	-30		30	μΑ
I _{IL}	Low level i current	nput	VI=0.8V	-30		30	μΑ
			CANH=-7V	-250			
I	Short circui	it output	CANH=12V			1	mΛ
TOS	current	ii ouipui	CANL=-7V	-1			IIIA
			CANL=12V			250	
Co	Output capa	citance	See receiver				
			Standby		650	950	μΑ
I _{CC}	Supply curre	ent	V ₁ =0V (dominant), no load			6	mA
			$V_1 = VCC$ (recessive), no load			6	mA

(If not otherwise stated, $V_{CC}=3.3V\pm10\%$, Temp=T_{MIN}~T_{MAX}, the typical value is $V_{CC}=+3.3V$, Temp=25°C)

BUS TRANSMITTER SWITCHING CHARACTERISTICS

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
		R=0, short circuit (see Figure 4)		35	85	
t _{PLH}	Propagation delay time (low-to-high level)	R=10 kΩ		70	125	
		R=100 kΩ		500	870	
		R=0, short circuit (see Figure 4)		70	120	ns
t _{PHL}	Propagation delay time (high-to-low level)	R=10 kΩ		130	180	
		R=100 kΩ		870	1200	
t _{sk(p)}	Pulse skew	R=0, short circuit (see Figure 4)		35		

SIT65HVD233 3.3V High-Speed CAN Transceiver with Diagnostic Loopback

	$ t_{\rm DIM} - t_{\rm DIM} $	R=10 kΩ		60	
		R=100 kΩ		370	
tr		R=0, short circuit (see Figure 4)	20		80
	Output signal rise time	R=10 kΩ	30		160
		R=100 kΩ	300		1400
		R=0, short circuit (see Figure 4)	20		80
tf	Output signal fall time	R=10 kΩ	30		160
		R=100 kΩ	300		1400

(If not otherwise stated, $V_{CC}=3.3V\pm10\%$, Temp=T_{MIN}~T_{MAX}, the typical value is $V_{CC}=+3.3V$, Temp=25°C)

BUS RECEIVER DC CHARACTERISTICS

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IT+}	Positive-going input threshold voltage	See table 1		750	900	mV
V _{IT-}	Negative-going input threshold voltage	See table 1	500	650		mV
V _{hys}	Hysteresis voltage	VIT+- VIT-		100		mV
V _{OH}	High level output voltage	$-6V < V_{ID} < 500 \text{mV}$ $I_O = -8 \text{mA} \text{ (see Figure 5)}$	2.4			V
V _{OL}	Low level output voltage	900mV< V_{ID} < 6V I_O =8mA (see Figure 5)			0.4	V
Ii		VIH=12V, VCC=0V	100		600	μΑ
Ii	Dere inner en ment	VIH=12V, VCC=3.3V	100		500	μΑ
Ii	Bus input current	VIH=-7V, VCC=0V	-450		-20	μΑ
Ii		VIH=-7V, VCC=3.3V	-610		-30	μΑ
R _i	Input resistance	ISO 11898-2 standard	20	35	50	KΩ
R _{diff}	Differential input resistance	ISO 11898-2 standard	40		100	KΩ
Ci	Input capacitance	ISO 11898-2 standard		40		pF
C _{diff}	Differential input capacitance	ISO 11898-2 standard		20		pF

	SIT65HVD233
2 芯力特	3.3V High-Speed CAN Transceiver with Diagnostic Loopback

I _{CC}	Supply current	See driver					
-----------------	----------------	------------	--	--	--	--	--

(If not otherwise stated, V_{CC} =3.3V±10%, Temp=T_{MIN}~T_{MAX}, the typical value is V_{CC}=+3.3V, Temp=25°C)

BUS RECEIVER SWITCHING CHARACTERISTICS

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PLH}	Propagation delay time (low-to-high level)	See Figure 6		35	60	ns
t _{PHL}	Propagation delay time (high-to-low level)	See Figure 6		35	60	ns
t _{sk}	Pulse skew	$ t_{PHL} - t_{PLH} $			10	ns
tr	Output signal rise time	See Figure 6		1.5		ns
tf	Output signal fall time	See Figure 6		1.5		ns

(If not otherwise stated, $V_{CC}=3.3V\pm10\%$, Temp=T_{MIN}~T_{MAX}, the typical value is $V_{CC}=+3.3V$, Temp=25°C)

DEVICE SWITCHING CHARACTERISTICS

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _(LOOP1)	Loop delay 1, driver	R=0, short circuit (see Figure 8)		70	135	ns
	input to receiver	R=10 kΩ		105	190	ns
	dominant	R=100 kΩ		535	1000	ns
	Loop delay 2, driver input to receiver output, dominant to recessive	R=0, short circuit (see Figure 8)		70	165	ns
t _(LOOP2)		R=10 kΩ		105	190	ns
		R=100 kΩ		535	1000	ns
t _(LBK)	Loopback delay, driver input to receiver output	(See Figure 9)		7.5	12	ns

(If not otherwise stated, V_{CC} =3.3V±10%, Temp=T_{MIN}~T_{MAX}, the typical value is V_{CC}=+3.3V, Temp=25°C)

OVER TEMPERATURE PROTECTION

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Over temperature shutdown	Tj(sd)		155	165	180	°C

(If not otherwise stated, $V_{CC}=3.3V\pm10\%$, Temp=T_{MIN}~T_{MAX}, the typical value is $V_{CC}=+3.3V$, Temp=25°C)

CONTROL PIN CHARACTERISTICS

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
T _{WAKE}	Standby to wake up time	R _s connected to square wave (see Figure 7)		0.55	1.5	μs
I _{RS}	High-speed mode input current	$V_{RS} < 1V$	-450		0	μΑ
V _{RS}	Standby/sleep input voltage	$0 < V_{RS} < V_{CC}$	0.75V _{CC}		V _{CC}	V
I _{off}	Power-down leakage current	Vcc=0V, V _{CANH} =V _{CANL} =5V	-250		250	μΑ

(If not otherwise stated, $V_{CC}=3.3V\pm10\%$, Temp= T_{MIN} ~ T_{MAX} , the typical value is $V_{CC}=+3.3V$, Temp=25°C)

				عرعد		JKKENI
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Standby mode power consumption	I _{CC}	R _S =VCC, V _I =VCC		650	950	μΑ
Dominant power consumption		V _I =0V, R _S =0V, LOAD=60Ω		50	70	mA
Recessive power consumption		V _I =VCC, R _S =0V, NO LOAD			6	mA

(If not otherwise stated, $V_{CC}=3.3V\pm10\%$, Temp= $T_{MIN}\sim T_{MAX}$, the typical value is $V_{CC}=+3.3V$, Temp=25°C)

FUNCTION TABLE

Table 1 Receiver characteristics over common mode ($V_{(RS)}$ =1.2V)

			()	/
V _{ID}	V _{CANH}	V _{CANL}	R OU	TPUT
900mV	-6.1V	-7V	L	
900mV	12V	11.1V	L	VOI
6V	-1V	-7V	L	VOL
6V	12V	6V	L	
500mV	-6.5V	-7V	Н	
500mV	12V	11.5V	Н	VOU
-6V	-7V	-1V	Н	VOH
-6V	6V	12V	Н	
Х	Open	Open	Н	

(1) H=high level; L=low level; X=irrelevant

SIT65HVD233 3.3V High-Speed CAN Transceiver with Diagnostic Loopback

INPUTS			OUTPUTS		
D	LBK	Rs	CANH	CANL	Bus state
Х	Х	>0.75V _{CC}	Z	Z	Recessive
L	L or open	<0.2214	Н	L	Dominant
H or open	Х	$< 0.33 V_{CC}$	Z	Z	Recessive
X	Н	0.33V _{CC}	Z	Z	Recessive

Table 2 Driver functions

(1) H=high level; L=low level; Z=high impedance state

Table 3 Receiver functions						
	OUTPUT					
Bus state	V _{ID} =CANH-CANL	LBK	D	R		
Dominant	$V_{\rm ID}\!\geq\!0.9V$	L or open	Х	L		
Recessive	$V_{\text{ID}} \leq 0.5 V$ or open	L or open	H or open	Н		
?	$0.5 < V_{\text{ID}} < 0.9 V$	L or open	H or open	?		
Х	Х	Н	L	L		
X	X	Н	Н	Н		

(1) H=high level; L=low level; ?=uncertain; X=irrelevant

TEST CIRCUIT

DESCRIPTION

1 Brief description

The SIT65HVD233 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3V \mu Ps$, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and basestation control and status. The devices are designed for data rates up to 1 Mbps, and are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

2 Short circuit protection

A current-limiting circuit protects the driver output stage of the SIT65HVD233 against short-circuits to positive and negative supply voltage. When short-circuit occurs the power dissipation increases but the short-circuit protection function will prevent destruction of the driver output stage.

3 Over temperature protection

The SIT65HVD233 has an integrated over-temperature protection circuit. If the junction temperature exceeds approximately 160°C, the current in the driver stage will decrease. Because the driver stage dissipates most of the power, the power dissipation and temperature of the IC is reduced. All other parts of the chip remain operational.

4 Electrical transient protection

Electrical transients often occur in automotive applications. The CANH and CANL of the SIT65HVD233 are also protected against electrical transients.

5 Control mode

Three different operating modes are provided through the RS pin (pin 8): high-speed mode, slope control mode and low-power mode

(1) High-speed mode

High-speed mode can be selected by applying logic low level to RS pin (pin 8). High-speed working mode is usually used in industrial applications. The high-speed mode allows the output to switch as fast as possible, and there are no internal restrictions on the output rise and fall slopes. If the high-speed conversion will affect the radiation performance, you can use the slope control mode.

If the application requires the use of high-speed and low-power sleep modes, the mode selection pins can be directly connected to the general-purpose output pins of the microprocessor, MCU or DSP. When the controller outputs a logic low level (< 1.2 V), the device enters high-speed mode; when the controller outputs a logic high level (> 0.75 VCC), the device enters sleep mode.

i 芯力特

For many applications that are still using unshielded twisted pair bus cables to reduce system costs, electromagnetic compatibility is critical. The device has a new slope control mode, which can reduce the electromagnetic interference generated by the rise and fall time of the driver and the harmonics generated thereby. By connecting a resistor between RS (pin 8) and ground or logic low voltage, the rising and falling slopes of the driver output can be adjusted. The slope of the output signal of the driver is proportional to the output current of the pin, and the slope control is achieved through an external resistor (typically $10k\Omega \sim 100k\Omega$).

(3) Standby mode

If a logic high level (> 0.75 VCC) is applied to RS (pin 8), the device will enter a low current, listen-only standby mode. During this mode, the driver will be turned off and the receiver will remain working. In this listen-only state, the transceiver is completely passive to the bus. It makes no difference if a slope control resistor is placed or not. When the rising edge of the dominant state (bus differential voltage > 900mV typical value) occurs on the bus, the microprocessor can reverse this low-power standby mode. The microprocessor senses bus activity and reactivates the driver circuit by applying a logic low (< 1.2V) to RS (pin 8).

6 Diagnostic loopback function

The diagnostic loopback or internal loopback function of the SIT65HVD233 is enabled with a high level input on pin 5, LBK. This mode disables the driver output while keeping the bus pins biased to the recessive state. This mode also redirects the D data input (transmit data) through logic to the received data output pin, thus creating an internal loopback of the transmit to receive data path. This simulates the loopback that occurs normally with a CAN transceiver because the receiver loops back the driven output to the R (receive data) pin. This mode allows the host protocol controller to input and read back a bit sequence or CAN messages to perform diagnostic procedures without disturbing the CAN bus.

If the LBK pin is not used, it may be grounded (GND). However, it is pulled low internally (defaults to a low level input) and may be left open if not used.

SOP8 DIMENSIONS

PACKAGE SIZE				
Symbol	MIN./mm	TYP./mm	MAX./mm	
А	1.50	1.60	1.70	
A1	0.1	0.15	0.2	
A2	1.35	1.45	1.55	
b	0.355	0.400	0.455	
D	4.800	4.900	5.00	
Е	3.780	3.880	3.980	
E1	5.800	6.000	6.200	
e		1.270BSC		
L	0.40	0.60	0.80	
с	0.153	0.203	0.253	
θ	-2°	-4°	-6°	

DIP8 DIMENSIONS

PACKAGE SIZE					
Symbol	MIN./mm	TYP./mm	MAX./mm		
А	9.00	9.20	9.40		
A1	0.33	0.45	0.51		
A2		2.54TYP			
A3		1.525TYP			
В	8.40	8.70	9.10		
B1	6.20	6.40	6.60		
B2	7.32	7.62	7.92		
С	3.20	3.40	3.60		
C1	0.50	0.60	0.80		
C2	3.71	4.00	4.31		
D	0.20	0.28	0.36		
L	3.00	3.30	3.60		

TYPE NUMBER	TEMPERATURE	PACKAGE
SIT65HVD233DR	-40°C~125℃	SOP8
SIT65HVD233P	-40°C~125℃	DIP8

Tape/reel package is 2500 pieces