5V,±40V BUS Protection,1Mbps High Speed CAN transceiver

1. Description

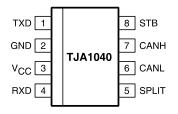
The TJA1040 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is primarily intended for high speed applications, up to 1 MBaud, in passenger cars. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	Vcc		4.5	5.5	V
Maximum transmission rate	1/t _{bit}	Non-return to zero code	1		Mbaud
CANH/CANL	V		-40	+40	V
input or output voltage	V _{can}		-40	+40	v
Bus differential voltage	V _{diff}		1.5	3.0	V
Virtual junction temperature	T _{amb}		-40	125	°C
ESD	V _{esd}	НВМ	±8		KV

2. Features

- Fully compatible with the ISO 11898 standard
- Thermally protected
- Input levels compatible with 3.3 V and 5 V devices
- Transmit Data (TXD) dominant time-out function
- · Very low-current standby mode with remote

wake-up Capability via the bus: 5µA Typical


- Transceiver in unpowered state disengages from the bus (zero load)
- At least 110 nodes can be connected
- High speed (up to 1 MBaud)
- Very low Electro Magnetic Emission (EME)

3. Ordering Information

Type Number	Package Type	Packing	Notes
TJA1040T	SOIC-8	Tape & Reel	
TJA1040U	DFN3*3-8	Tape & Reel	

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.

4. Pin Configuration

5. Pin Description

PIN	SYMBOL	DESCRIPTION
1	TXD	transmit data input
2	GND	ground supply
3	V _{cc}	supply voltage
4	RXD	receive data output; reads out datafrom the bus lines
5	SPLIT	common-mode stabilization output
6	CANL	LOW-level CAN bus line
7	CANH	HIGH-level CAN bus line
8	STB	standby mode control input

6. Limiting Values

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V _{CC}	-0.3~+6	V
DC voltage on TXD/RXD/STB pins	TXD, RXD, STB	-0.3~V _{CC} +0.3	V
Voltage range at any bus terminal (CANH, CANL, SPLIT)	CANL, CANH, SPLIT	-40~40	V
Transient voltage on pins CANH, CANL and SPLIT see Fig.7	Vtr	-200~+200	V
Storage temperature		-55~150	°C
Virtual junction temperature		-40~125	°C
Welding temperature range		300	°C

The maximum limit parameters means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal opration of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

7. Driver Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
CANH dominant	.,		0.75	0.5	4.5	
output voltage	V _{OH(D)}	V _I =0V, STB=0V, R _L =60Ω,	2.75	3.5	4.5	V
CANL dominant		Fig.1, Fig.2	0.5	4.5	0.05	
output voltage	V _{OL(D)}		0.5	1.5	2.25	V
Bus recessive output	.,	V _I =3V, STB=0V, R _L =60Ω,	0	0.5	0	
voltage	V _{O(R)}	Fig.1, Fig.2	2	2.5	3	V
Bus dominant						
differential output	V _{OD(D)}	$V_i=0V$, STB=0V, $R_L=60\Omega$,	1.5		3	v
voltage		Fig.1, Fig.2				
Due manage		V ₁ =3V, S=0V,	0.010		0.010	v
Bus recessive	V	Fig.1, Fig.2	-0.012	-0.012 -0.5 -400 2.5 2.5 2.5 30 -105 -72 0.36 -1 0.5	0.012	V
differential output	V _{OD(R)}	V _I =3V, STB=0V,	0.5		0.05	v
voltage		NO LOAD	-0. 5	3.5 1.5 2.5 2.5 2.5 30 -72 0.36 0.5	0.05	v
Transmitter dominant	V		400		400	mV
voltage symmetry	$V_{\text{dom}(TX)\text{sym}}$	V _{dom(TX)sym} = V _{CC} - V _{CANH} - V _{CANL}	-400		400	mv
Transmitter voltage	V	V _{TXsym} = V _{CANH} + V _{CANL}	0.01/		1 1\/	V
symmetry	V _{TXsym}	VTXsym - VCANH + VCANL	0.9VCC		I.IVCC	v
Common-mode	Voc	STB=0V, Fig.8	2	25	3	v
output voltage	VOC		2	2.5	5	v
Peak-to-peak						
Common-mode	ΔV_{OC}			30		mV
output voltage						
		CANH=-12V,	-105	-72		mA
		CANL=open, Fig.11	-100	-12	 2.25 3 3 0.012 0.05 400 1.1Vcc 3 3 1 105 	
		CANH=12V,		0.36		mA
Short-circuit output		CANL=open, Fig.11		Image:	1	
current	los	CANL=-12V,	1	0.5		mA
		CANH=open, Fig.11	-1	0.5		ШA
		CANL=12V,	74 40		105	mA
		CANH=open, Fig.11		11	105	mA
Recessive output		-27V <canh<32v< td=""><td>-2.0</td><td></td><td>25</td><td>mA</td></canh<32v<>	-2.0		25	mA
current	I _{O(R)}	0 <v<sub>CC<5.25V</v<sub>	-2.0		2.5	mA

(V_{CC}=5V \pm 10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and T_{emp}=25°C)

8. Driver Switching Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay	t _{PLH}	STB=0V, Fig.4	25	65	120	ne
time,low-to-high-level output		51D-0V, FIG.4	20	00	120	ns
Propagation delay	t _{PHL}		25	45	90	ns

time,low-to-high-level output						
Differential output signal rise time	tr			25		ns
Differential output signal fall time	t _f			50		ns
Enable time from standby mode to	-	Fig.7			10	μs
dominant	2.1	0				•
Bus dominant time-out time	t _{dom}	Fig.10	300	450	700	μs
Bus wake-up filter time	t _{BUS}		0.7		5	μs

(V_{CC}=5V \pm 10% and T_{emp}=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and T_{emp}=25°C)

9. Receiver Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Positive-going input threshold voltage	V _{IT+}	STB=0V, Fig.5		800	900	mV
Negative-going input threshold voltage	V _{IT-}		500	650		mV
Hysteresis voltage	N		100	105		
$(V_{IT+} - V_{IT-})$	V _{HYS}		100	125		mV
High-level output voltage	V _{OH}	IO=-2mA, Fig.6	4	4.6		V
Low-level output voltage	V _{OL}	IO=2mA, Fig.6		0.2	0.4	V
		CANH or				
Power-off bus input current	I _(OFF)	CANL=5V,			5	μA
		Other pin=0V			5	
Input capacitance to ground, (CANH or	0			13		
CANL)	Cı			13		pF
Differential input capacitance	C _{ID}			5		pF
Input resistance,	P		45	20	10	KO
(CANH or CANL)	R _{IN}	TXD=3V, STB=0V	15	30	40	ΚΩ
Differential input resistance	R _{ID}		30		80	ΚΩ
Input resistance matching	R _{Imatch}	CANH=CANL	-3%		3%	
The range of common-mode voltage	V _{COM}		-12		12	V

(V_{CC}=5V±10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and T_{emp}=25°C)

10. Receiver Switching Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay time,low-to-high-level output	t	STB=0V or V_{CC} ,	60	100	130	ns
	t _{PLH}	Fig.6	00	100	130	
Propagation delay time,low-to-high-level output	t _{PHL}		45	70	90	ns
RXD signal rise time	t _r			8		ns
RXD signal fall time	t _f			8		ns

(V_{CC}=5V±10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and T_{emp}=25°C)

Rev. 1.0 — January 2023

11. Device Switching Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Loop delay1, driver input to receiver output, Recessive to	Td(LOOP1)	STB=0V,	90		190	ns
Dominant		Fig.9				
Loop delay 2, driver input to receiver output, Dominant to	Td(LOOP2)		90		190	ns
Recessive	· · · · ·					

(V_{CC}=5V \pm 10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and T_{emp}=25°C)

12. Over Temperature Protection

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Shutdown junction temperature	Tj(sd)			160		°C

13. TXD-Pin Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
HIGH-level input current	I _{IH(TXD)}	V _I =V _{CC}	-2		2	μA
LOW-level input current	I _{IL(TXD)}	V _I =0	-50		-10	μA
When V_{CC} =0V, current on TXD pin	I _{O(OFF)}	V _{CC} =0V, TXD=5V			1	μA
HIGH-level input voltage	VIH		2		V _{CC} +0.3	V
LOW-level input voltage	V _{IL}		-0.3		0.8	V
Open voltage on TXD pin	T _{XDO}		Н			logic

(V_{CC}=5V \pm 10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and Temp=25°C)

14. STB Pin Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
HIGH-level input voltage	VIH	S	2.0		V _{CC} +0.3	V
LOW-level input voltage	V _{IL}	S	-0.3		0.8	V
HIGH-level input current	l _{IH}	V _S =V _{CC}		0		uA
LOW-level input current	I _{IL}	V _S =0V	-1	-3	-10	uA

15. Commom-Mode Stabilization Output

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Common-mode stabilization output voltage	Vo	-500uA <l₀<500ua< td=""><td>$0.3V_{CC}$</td><td></td><td>$0.7V_{CC}$</td><td>V</td></l₀<500ua<>	$0.3V_{CC}$		$0.7V_{CC}$	V
Leakage current	I _{O(stb)}	STB=2, -12V <v<sub>0<12V</v<sub>	-5		5	μA

(V_{CC}=5V \pm 10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and Temp=25°C)

16. Supply Current

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Standby	Icc	STB=V _{CC} , V _I =V _{CC}		5	12	μA
Dominant		VI=0V, STB=0V, LOAD=60Ω		50	70	mA
Recessive		VI=VCC, STB=0V, NO LOAD		6	10	mA

(V_{CC}=5V \pm 10% and Temp=T_{MIN}~T_{MAX} unless specified otherwise; typical in V_{CC}=+5V and Temp=25°C)

17. Function Table

Table 1. CAN TRANSCEIVER TRUTH TABLE

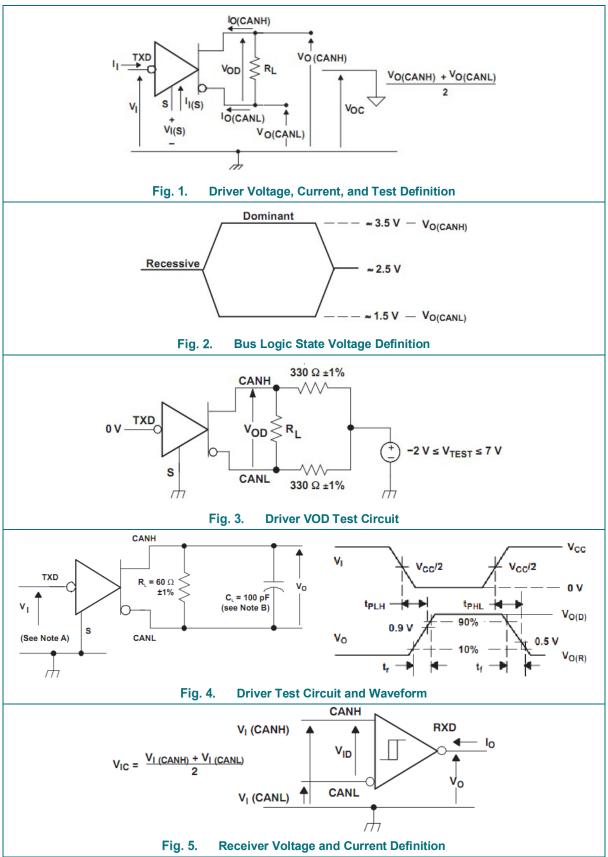
Vcc	TXD ⁽¹⁾	STB ⁽¹⁾	CANH ⁽¹⁾	CANL ⁽¹⁾	BUS STATE	RXD ⁽¹⁾
4.5V~5.5V	L	L	Н	L	Dominate	L
4.5V~5.5V	H or Open	X ₍₁₎	0.5V _{CC}	0.5V _{CC}	Recessive	Н
4.5V~5.5V	Х	H or Open	0.5V _{CC}	0.5V _{CC}	Recessive	Н
0 <v<sub>CC<4.5V</v<sub>	Х	Х	0V <v<sub>CANH<v<sub>CC</v<sub></v<sub>	0V <v<sub>CANL<v<sub>CC</v<sub></v<sub>	Recessive	Х

(1) H=high level; L=low level; X=irrelevant

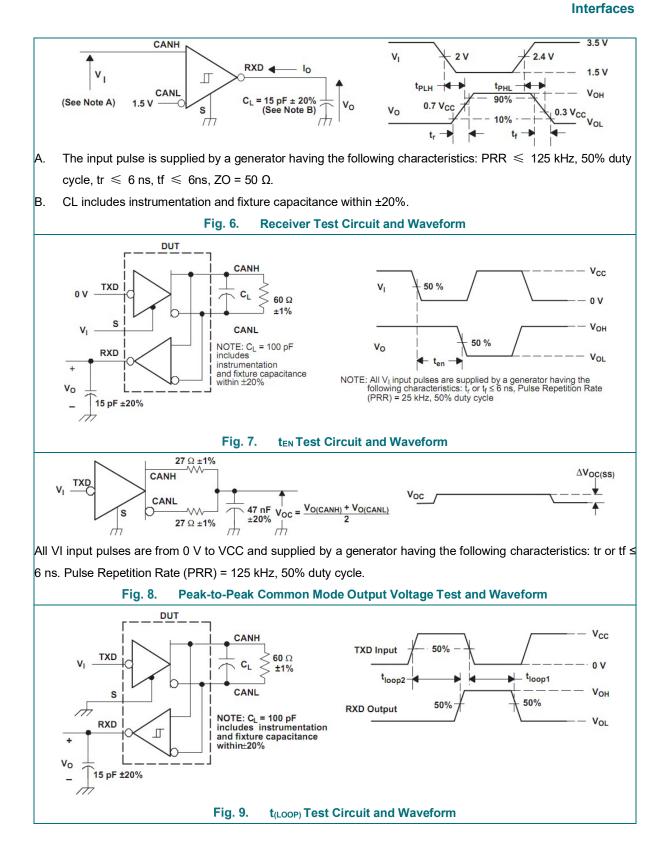
Table 2. DRIVER FUNCTION TABLE

INPUTS		OUTPUTS		Bus State	
TXD ⁽¹⁾	STB ⁽¹⁾	CANH ⁽¹⁾	CAL ⁽¹⁾	Dus State	
L	L	Н	L	Dominate	
H or Open	Х	Z	Z	Recessive	
X	H or Open	Z	Z	Recessive	

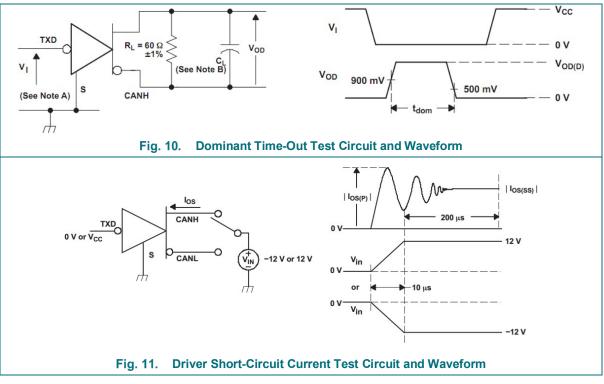
(1) H=high level; L=low level; X=irrelevant; Z=high impedance


Table 3. RECEIVER FUNCTION TABLE

VID=CANH-CANL	RXD ⁽¹⁾	Bus State ⁽¹⁾
V _{ID} ≥0.9V	L	Dominate
0.5< V _{ID} <0.9V	?	?
V _{ID} ≤0.5V	Н	Recessive
Open	Н	Recessive


(1) H=high-level; L=low-level; ?=uncertain

18. Test Circuit



© Shenzhen Fulihao Science & Technology Co., Ltd.

Interfaces

19. Additional Description Sketch

The TJA1040 is the interface between the Controller Area Network (CAN) protocol controller and the

physical bus, and can be applied to the fields of trucks, buses, cars, industrial control etc. It is primarily intended for high speed applications, up to 1 MBaud, in passenger cars. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller, and fully compatible with the ISO 11898 standard.

Current protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

Fail-safe features

Pin TXD provides a pull-up towards VCC in order to force a recessive level in case pin TXD is unsupplied. Pin STB provides a pull-up towards VCC in order to force the transceiver into standby mode in case pin STB is unsupplied.

In the event that the VCC is lost, pins TXD, STB and RXD will become floating to prevent reverse supplying

conditions via these pins.

Over temperature protection

The output drivers are protected against overtemperature conditions. If the virtual junction temperature exceeds the shutdown junction temperature Tj(sd), the output drivers will be disabled until the virtual junction temperature becomes lower than Tj(sd) and TXD becomes recessive again.

By including the TXD condition, the occurrence of output driver oscillation due to temperature drifts is avoided.

TXD dominant time-out function

A 'TXD dominant time-out' timer circuit prevents the bus lines from being driven to a permanent dominant state (blocking all network communication) if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TXD.

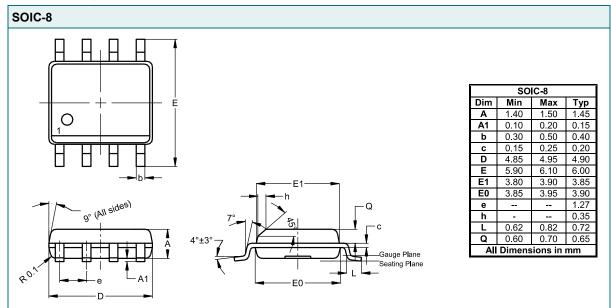
If the duration of the LOW level on pin TXD exceeds the internal timer value (tdom), the transmitter is disabled, driving the bus lines into a recessive state. The timer is reset by a positive edge on pin TXD.

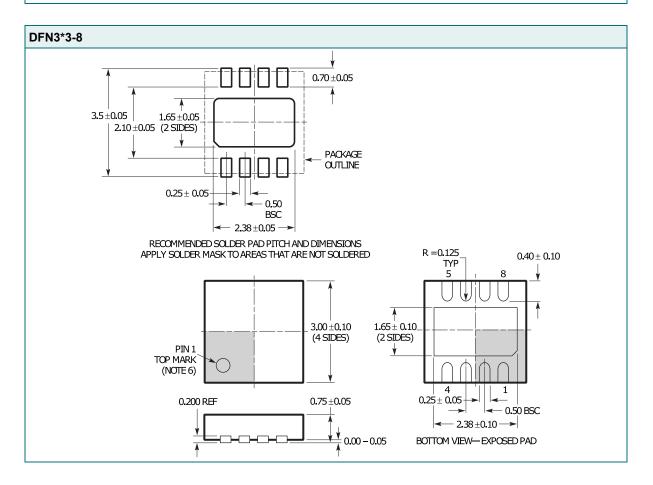
Operating modes

The TJA1040 provides two modes of operation which are selectable via pin STB: High-speed mode and standby mode.

High-speed mode is normal working mode, by connecting STB to ground to set the TJA1040 to high-speed mode. In this mode the transceiver is able to transmit and receive data via the bus lines CANH and CANL.

The differential receiver converts the analog data on


the bus lines into digital data which is output to pin RXD via the multiplexer (MUX).


If a logic-high or open is applied to STB, the TJA1040 enters a low-current standby mode. In this mode the transmitter and receiver are switched off, and the lowpower differential receiver will monitor the bus lines.

A HIGH level on pin STB activates this low-power receiver and the wake-up filter, and after tBUS the state of the CAN bus is reflected on pin RXD.

20. Package Outlines

21. Disclaimers

Limited warranty and liability

Information in this document is believed to be accurate and reliable. However, Fulihao does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Suitability for use

Fulihao products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable Fulihao product documentation.

Right to make changes

Fulihao reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. Fulihao takes no responsibility for the content in this document if provided by an information source outside of Fulihao. This document supersedes and replaces all information supplied prior to the publication hereof.