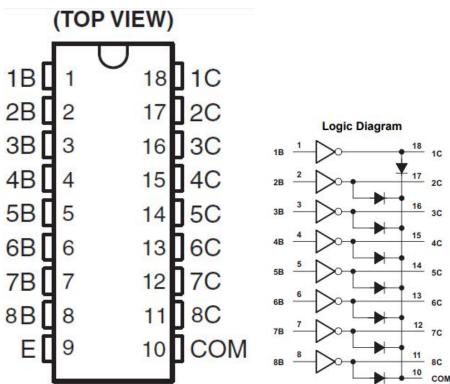
Features

- 500-mA-Rated Collector Current(single output)
- High-Voltage Outputs:50V
- Output Clamp Diodes

- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

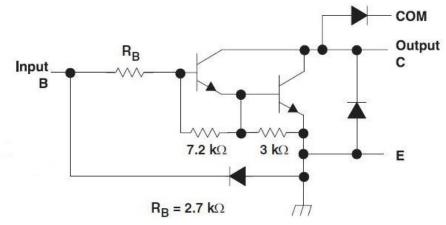
General Description


The TX2803 is high-voltage high-current Darlington transistor arrays each containing eight open collector common emitter pairs. Each pair is rated at 500mA. Suppression diodes are included for inductive load driving, the inputs and outputs are pinned in opposition to simplify board layout.

These devices are capable of driving a wide range of loads including solenoids, relays, DC motors, LED displays, filament lamps, thermal print-heads and high-power buffers.

The TX2803 is available in both a small outline 18-pin package (SOP18).

Pin Assignments


Connection Diagram

Pin Descriptions

Pin Number	Pin Name	Function
1	1B	Input pair1
2	2B	Input pair2
3	3B	Input pair3
4	4B	Input pair4
5	5B	Input pair5
6	6B	Input pair6
7	7B	Input pair7
8	8B	Input pair8
9	E	Common Emitter (ground)
10	COM	Common Clamp Diodes
11	8C	Output pair8
12	7C	Output pair7
13	6C	Output pair6
14	5C	Output pair5
15	4C	Output pair4
16	3C	Output pair3
17	2C	Output pair2
18	1C	Output pair1

Functional Block Diagram

Note: All resistor values shown are nominal.

The collentor-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schoottky diode should be added to clamp negative undershoots.

ULN2803 series High-voltage High-current Darlington Transistor Arrays

Absolute Maximum Ratings (1)

At 25°C free-air temperature (unless otherwise noted)

Symbol	Parameter		Min	Max	Unit
Vcc	Collector to emitter voltage			50	V
V_R	Clamp diode reverse voltage(2)			50	V
Vı	Input voltage(2)			30	V
ICP	Peak collector current See typical characteristics			500	mA
lok	Output clamp current			500	mA
I _{TE}	Total emitter-terminal current			-2.5	Α
T _A	Operating free-air temperature range TX2003		-30	+105	°C
θ_{JA}	Thermal Resistance Junction-to-Ambient(3)			63	°C/W
θјс	Thermal Resistance Junction-to-Case(4)			12	0,,,
TJ	Operating virtual junction temperature			150	°C
T _{STG}	Storage temperature range			150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
- (3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
- (4) Maximum power dissipation is a function of TJ(max), θJC, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJC. Operating at the absolute maximum TJ of 150°C can affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
VCC	Collector to Emitter voltage	-	50	V
TA	Operating Ambient Temperature	-30	+105	$^{\circ}\mathbb{C}$

ULN2803 series High-voltage High-current Darlington Transistor Arrays

Electrical Characteristics(TA=+25℃, unless otherwise specified)

Parameter		Test Figure	Test Con	MIN	TYP	MAX	Unit		
				IC = 200 mA			2.4		
V _{I(on)}	On-state input voltage	Figure 6	VCE = 2 V	IC = 250 mA	-		2.7	V	
				IC = 300 mA	-		3		
		Figure 5	Iι = 250 μA,	IC = 100 mA		0.9	1.1		
V _{CE(sat)}	Collector-emitter saturation voltage		I _I = 350 μA,	IC = 200 mA		1	1.3	V	
			II = 500 μA,	IC = 350 mA		1.2	1.6		
	Collector cutoff current	Figure 1	VCE = 50 V,	II = 0			50		
CEX		Figure 2	VCE = 50 V, TA = +105°C	I _I = 0			100	μA	
V _F	Clamp forward voltage	Figure 8	IF = 350 mA			1.7	2	V	
l I(off)	Off-state input current	Figure 3	VCE = 50 V,	IC = 500 μA	50	65		μΑ	
		Figure 4	V _I = 3.85 V			0.93	1.35		
lı lı	Input current		VI = 5 V					mA	
			V _I = 12 V		1				
-	Clamp reverse current	Figure 7	\/ - 50\/				50		
IR		Figure 7	VR = 50 V	TA = 70°C			100	μA	
Ci	Input capacitance		V _I = 0, f = 1 MHz			15	25	рF	

Switching Characteristics (TA = +25°C, unless otherwise specified)

	Parameter	Test Conditions	MIN	TYP	MAX	UNIT
t PLH	Propagation delay time, low- to high-level output	See Figure 9		0.25	1	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 9		0.25	1	μs
V _{OH}	High-level output voltage after switching	V _S = 50 V, I _O = 300 mA, See Figure 9	VS-20			mV

Parameter Measurement Information

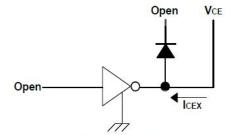


Fig.1 ICEX Test Circuit

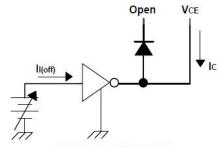


Fig.3 II(off) Test Circuit

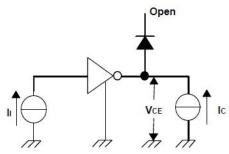


Fig. 5 hFE , VCE(sat) Test Circuit

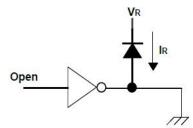


Fig. 7 IR Test Circuit

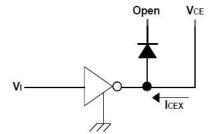


Fig.2 ICEX Test Circuit

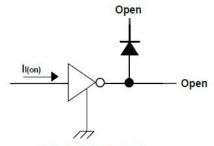


Fig.4 In Test Circuit

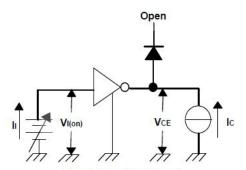


Fig. 6 Vi(on) Test Circuit

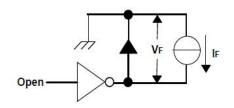
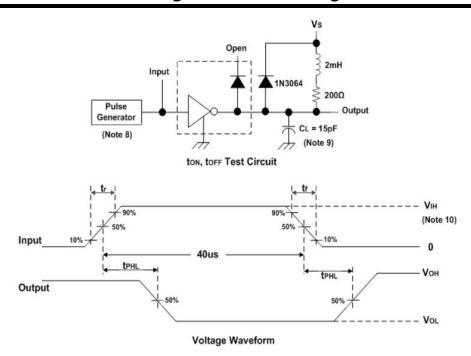
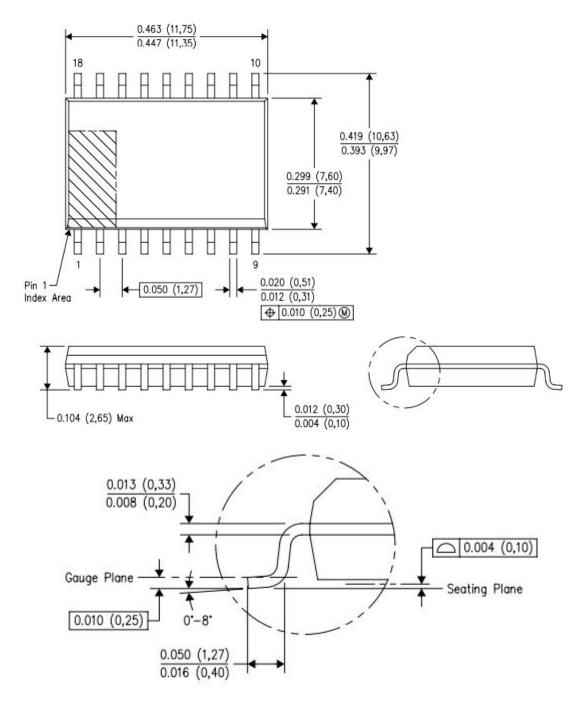


Fig. 8 VF Test Circuit

ULN2803 series High-voltage High-current Darlington Transistor Arrays




Fig. 9 Latch-Up Test Circuit and Voltage Waveform

Notes: 9. C_L includes prove and jig capacitance.

10. V_{IH}=3V

6

SOP18 Outline Dimensions

