

Pulse width modulation circuit

Description:

The accuracy of the SG3525 chip plus 5.1V reference voltage is \pm 1%. As thereference voltage value is within the input common mode range of the error amplifier, there is no need for an external resistor.

The SG3525 can operate in master-slave mode or synchronize with external clocks. The dead time can be adjusted by the resistance between the CT and the discharge terminal. Other functional circuits within the chip include: soft start circuit, shutdown circuit, and undervoltage circuit.

The output stage of the SG3525 control chip is a high-power totem pole output, with a source current and suction current exceeding 150mA. It provides a logic level of "or not" logic, and a low level when in the "off" state.

Features :

-Working voltage range 8~35V;

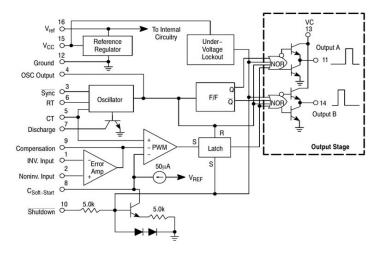
-5.1V reference voltage, accuracy \pm 1%;

-Oscillation frequency range: 100Hz~500KHz;

-Oscillator synchronization signal input terminal;

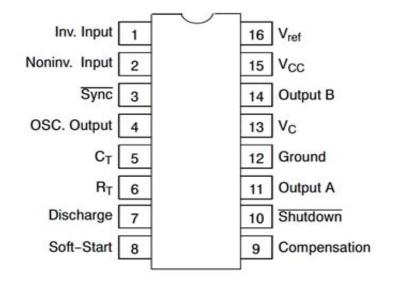
-Adjustable dead time;

-Built in soft start circuit;


-Step by step pulse shutdown;

-Input undervoltage locking with hysteresis voltage;

-PWM locking function, prohibiting multiple pulses;


-Packaging form: DIP/SOP16

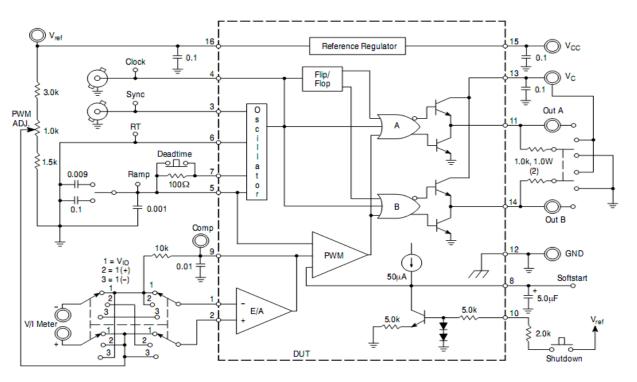
Internal schematic diagram:

Pin Assignment:

Absolute Maximum Ratings

parameter	symbol	value	unit
supply voltage	Vi	40	V
collector supply voltage	VC	40	V
Charging current of oscillator	IOSC	5	mA
Output source current	Io	400	mA
Reference output current	IR	50	mA
Power consumption Tamb=70℃	Ptot	1000	mV
operation temperature	Тор	0 to 70	°C
Junction temperature range	Tj	- 55 to 150	°C
Storage Temperature Range	Tstg	- 65 to 150	°C

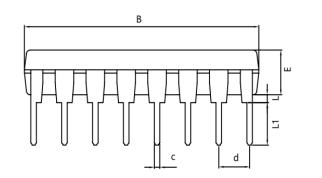
Electrical parameters (Vcc=20V)

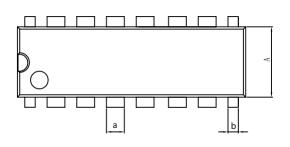

parameter	symbol	min	typ	max	unit	
		Reference source				
Reference output voltage	VREF	TJ = 25°C	5.0	5.1	5.2	V
Line rules	\triangle VREF	VCC = 8 to $35V$	_	9	20	mV
Load Regulation	\triangle VREF	IREF = 0 to 20 mA	-	20	50	mV
Short circuit output current	ISC	VREF = 0,TJ = 25℃	_	80	100	mA
Total output change	\triangle VREF	Line, load and temperature	4.95	_	5.25	V
Temperature Stability	STT		—	20	50	mV
Long term stability	ST	TJ = 125℃,1 KHRS	-	20	50	mV
		oscillator section				
Initial accuracy	ACCUR	TJ = 25℃	_	3	6	%
Frequency varies with voltage	\triangle f/ \triangle VCC	VCC = 8 to 35V	_	0.8	2	%
Maximum frequency	f(MAX)	$RT = 2K\Omega$, $CT = 470pF$	400	430	_	KHz
lowest frequency	f(MIN)	RT = $200K \Omega$, CT = 0. 1uF	_	60	_	Hz
Clock amplitude	V(CLK)		3	4	—	V
Clock width	tW(CLK)	TJ = 25℃	0.3	0.6	1	us
Synchronization threshold	VTH (SYNC)		1.2	2	2.8	V
Synchronous input current	II (SYNC)	Sync = 3.5V	-	1.3	2.5	mA
	Error	amplifier section(VCM = 5.1	V)			
input offset voltage	VIO		-	1.5	10	mV
Input Bias Current	IBIAS		-	1	10	μA
Input Offset Current	IIO		_	0.1	1	μA
open loop voltage gain	GVO	$RL \ge 10M \Omega$	60	80	-	dB
Common Mode Rejection Ratio	CMRR	VCM = 1.5 to 5.2V	60	90	_	dB
Power Supply Rejection Ratio	PSRR I VCC = 8 fo 3 5V		50	60	-	dB
		PWM comparator section		I	I	1
Minimum Duty Cycle	Cycle D(MIN)		-	-	0	%
Maximum duty cycle	D(MAX)		45	49	-	%

SG3525

VTH1	Zero duty cycle	0.7	0.9	_	V	
VTH2	TH2 Maximum duty cycle		3. 2	3.6	V	
	Soft start part					
ISOFT	VSD = OV, VSS = OV	25	51	80	μA	
VSL	VSD = 25V	-	0.3	0.7	V	
VTH (SD)		0.6	0.8	1	V	
IN(SD)	IN(SD) $VSD = 2.5V$		0.3	1	mA	
	Output section					
VOL I ISINK = 20mA		-	0.1	0.4	V	
VOL II	VOL II ISINK = 100mA		0.05	2	V	
VOH I	H I ISOURCE = 20mA		19	-	V	
VOH II	ISOURCE = 100 mA	17	18	_	V	
VUV	VUV V8 and V9 = High		7	8	V	
ILKG	VCC = 35V	_	80	200	μA	
tR	tR CL = 1uF, TJ = 25°C		80	600	ns	
tF $CL = 1uF, TJ = 25^{\circ}C$		-	70	300	ns	
Standby current						
Power supply current ICC VCC = 35V		_	12	20	mA	
	VTH2 ISOFT VSL VTH (SD) IN (SD) VOL I VOL II VOL II VOH I VOH II VOH II VUV ILKG tR tF	VTH2Maximum duty cycleSoft start partISOFTVSD = 0V, VSS = 0VVSLVSD = 25VVTH (SD)VSD = 2.5VIN (SD)VSD = 2.5VOutput sectionOutput sectionVOL IISINK = 20mAVOL IIISINK = 100mAVOL IIISOURCE = 20mAVOH IISOURCE = 100mAVUVV8 and V9 = HighILKGVCC = 35VtRCL = 1uF, TJ = 25°CtFCL = 1uF, TJ = 25°CStandby current	VTH2Maximum duty cycle-Soft start partSoft start partISOFTVSD = 0V, VSS = 0V25VSLVSD = 25V-VTH (SD)0.6IN (SD)VSD = 2.5V-Output section0VOL IISINK = 20mA-VOL IIISINK = 100mA-VOH IISOURCE = 20mA18VOH IIISOURCE = 100mA17VUVV8 and V9 = High6ILKGVCC = 35V-tRCL = 1uF, TJ = 25°C-tFCL = 1uF, TJ = 25°C-Standby current	VTH2 Maximum duty cycle - 3.2 Soft start part Soft start part 25 51 ISOFT VSD = 0V, VSS = 0V 25 51 VSL VSD = 25V - 0.3 VTH(SD) 0.6 0.8 IN(SD) VSD = 2.5V - 0.3 Output section - 0.1 VOL I ISINK = 20mA - 0.1 VOL II ISINK = 100mA - 0.05 VOH I ISOURCE = 20mA 18 19 VOH II ISOURCE = 100mA 17 18 VUV V8 and V9 = High 6 7 ILKG VCC = 35V - 80 tR CL = 1uF, TJ = 25°C - 80 tF CL = 1uF, TJ = 25°C - 70 Standby current - 70 -	VTH2 Maximum duty cycle - 3.2 3.6 Soft start part ISOFT VSD = 0V, VSS = 0V 25 51 80 VSL VSD = 25V - 0.3 0.7 VTH(SD) 0.6 0.8 1 IN(SD) VSD = 2.5V - 0.3 1 Output section - 0.1 0.4 VOL I ISINK = 20mA - 0.05 2 VOH I ISOURCE = 20mA 18 19 - VOH I ISOURCE = 100mA 17 18 - VUV V8 and V9 = High 6 7 8 ILKG VCC = 35V - 80 200 tR CL = 1uF, TJ = 25°C - 80 600 tF CL = 1uF, TJ = 25°C - 70 300	

Test Line

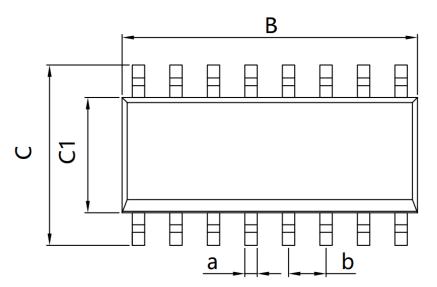


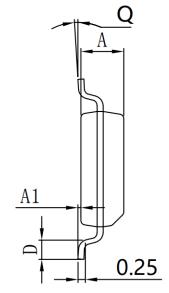


SG3525

PACKAGE MECHANICAL DATA

DIP16





Dimension	Dimensions In Millimeters						
Symbol :	Min :	Max :	Symbol :	Min :	Max :		
Α	6.100	6.680	L	0.500	0.800		
В	18.940	19.560	а	1.524 TYP			
D	8.200	9.200	b	0.889 TYP			
D1	7.42	7.820	с	0.457 TYP			
E	3.100	3.550	d	2.540 TYP			
L	0.500	0.800					

SOP16

Dimensions In Millimeters						
Symbol :	Min :	Max :	Symbol :	Min :	Max :	
Α	1.225	1.570	D	0.400	0.950	
A1	0.100	0.250	Q	0°	8°	
В	9.800	10.00	а	0.420 TYP		
С	5.800	6.250	b	1.270 TYP		
C1	3.800	4.000				