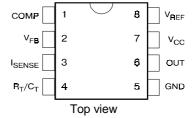
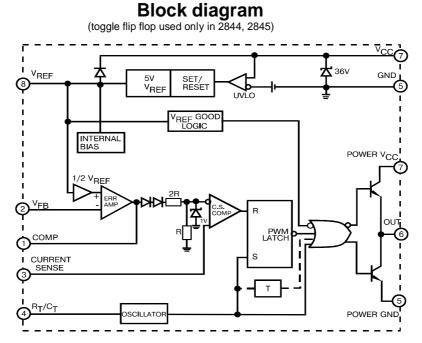
UMW PQ_63 (?)

UMW UC2842/43/44/45

Description


The 2842/43/44/45 are fixed frequency current mode PWM controller. They are specially designed for OFF-Line and DC to DC converter applications with a minimal external components. Internally implemented circuits include a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totempole output ideally suited for driving a power MOSFET. Protection circuitry includes built undervoltage lockout and current limiting. The 2842 and 2844 have UVLO thresholds of 16 V (on) and 10 V (off). The corresponding thresholds for the 2843/ 45 are 8.4V (on) and 7.6V (off). The 2842 and 2843 can operate within 100% duty cycle. The 2844 and 2845 can operate within 50% duty cycle.


The 284X has Start-Up Current 0.5mA (typ).

Features

- Low Start-Up and Operating Current
- High Current Totem Pole Output
- Undervoltage Lockout With Hysteresis
- Operating Frequency Up To 500KHz

Absolute Maximum Ratings

Symbol	Parameter	Maximum	Units
V _{cc}	Supply Voltage (low impedance source)	30	V
Ι _ο	Output Current	±1	A
VI	Input Voltage (Analog Inputs pins 2,3)	-0.3 to 5.5	V
I _{SINK (E.A)}	Error Amp Output Sink Current	10	mA
Po	Power Dissipation (T _A =25 ^o C)	1	W
Tstg	Storage Temperature Range	-65 to150	°C
TL	Lead Temperature (soldering 5 sec.)	260	О°
ТА	Operating Ambient Temperature	-25 to +85	°C

UMW® €9,63 00 🛦

UMW UC2842/43/44/45

Electrical characteristics

Characteristics	Symbol	Test Conditions		Min	Тур	Max	Units
Reference Section							
Reference Output Voltage	VREF	$T_{J} = 25^{\circ}C, I_{REF} = 1 \text{ mA}$		4.9	5.0	5.1	V
Line Regulation	ΔV_{REF}	$12V \leq Vcc \leq 25V$			6.0	20	mV
Load Regulation	ΔV_{REF}	1 mA ≤ Iref ≤ 20mA			6.0	25	
Short Circuit Output Current	lsc	$T_A = 25^{\circ}C$			-100	-180	mA
Oscillator Section	•	1		I		1	
	f	T _J = 25°C	284X	47	50	57	
Oscillation Frequency			284X	47	52	57	— KHz
Frequency Change with Voltage	$\Delta f / \Delta V_{CC}$	12V ≤ Vcc ≤ 2	25 V		0.05	1.0	%
Oscillator Amplitude	V _(OSC)	(peak to peak)			1.6		V
Error Amplifier Section	(000)	1,1		1	-	1	
Input Bias Current	I _{BIAS}	V _{FB} =3V			-0.1	-2	μA
Input Voltage	V _{I(E.A)}	$V_{pin1} = 2.5V$		2.42	2.5	2.58	V
Open Loop Voltage Gain	A _{VOL}	$2V \leq V_0 \leq 4V$		65	90		
Power Supply Rejection Ratio	PSRR	$12V \leq V_{CC} \leq 2$	25 V	60	70		dB
Output Sink Current	I _{SINK}	$V_{pin2} = 2.7V, V_{pin1} = 1.1V$		2	7		mA
Output Source Current	I _{SOURCE}	$V_{pin2} = 2.7V, V_{pin1} = 1.1V$ $V_{pin2} = 2.3V, V_{pin1} = 5V$		-0.5	-1.0		mA
High Output Voltage	Voh	$V_{pin2} = 2.3V, V_{pin1} = 5V$ $V_{pin2} = 2.3V, R_{L} = 15K\Omega \text{ to GND}$		5.0	6.0		
Low Output Voltage	Vol	$V_{pin2} = 2.3V, R_L = 15K\Omega \text{ to GND}$ $V_{pin2} = 2.7V, R_L = 15K\Omega \text{ to PIN 8}$		0.0	0.8	1.1	- V
Current Sense Section	VOL	v pin2 = 2.7 v, RL =	101022 10 1 110 0		0.0	1 1.1	
Gain	Gv	(Note 1 & 2)		2.85	3.0	3.15	V/V
Maximum Input Signal	V _{I(MAX)}	, ,		0.9	1.0	1.1	V
Supply Voltage Rejection	SVR	$V_{pin1} = 5V \text{ (Note 1)}$ $12V \leq V_{CC} \leq 25 \text{ V (Note 1)}$		0.9	70	1.1	dB
Input Bias Current		$V_{\text{pin3}} = 3V$			-3.0	-10	μA
Output Section	BIAS	$v_{pin3} = 3v$			-3.0	1 -10	μΑ
Low Output Voltage	V _{oL}	I _{SINK} = 20 mA			0.08	0.4	_
Low Output Voltage	VOL	$I_{SINK} = 200 \text{ mA}$			1.4	2.2	-
High Output Voltage	V _{OH}	-		13	13.5	2.2	- V
Tigh Ouput Voltage	V OH	I _{SINK} = 20 mA I _{SINK} = 200 mA		12	13.0		-
Rise Time	<u>+</u>		nΓ (Note 2)	12		150	-
Fall Time	tr tr	$T_J = 25^{\circ}C, C_L = 1nF \text{ (Note 3)}$ $T_J = 25^{\circ}C, C_L = 1nF \text{ (Note 3)}$			45	150	nS nS
	LF	$I_{\rm J} = 25^{\circ} {\rm C}, {\rm C}_{\rm L} = 1$	TIF (NOLE 3)		35	150	
Undervoltage Lockout Section	N N		2842/44	145	16.0	175	
Start Theshold	V _{TH(ST)}			14.5	16.0	17.5	- V
	N N		2843/45	7.8	8.4	9.0 11.5	
Min. Operating Voltage (After Turn On)	V _{OPR(min)}			8.5	10		- v
, ,			2843/45	7.0	7.6	8.2	
PWM Section		1			07	400	
Max. Duty Cycle	D _(MAX)		2842/43	95	97	100	%
		2844/45		47	48	50	- 10
Min. Duty Cycle	D _(MAX)					0	
Total Standby Current						1	
Start-Up Current	I _{ST}				0.05		— mA
Operating Supply Current	I _{CC (OPR)}	$V_{pin3} = V_{pin2} = 0V$			13	17	
Zener Voltage	Vz	I _{cc} =25 mA		30	38		V

Zener VoltageVzIcc=25 mA* - Adjust Vcc above the start threshold before setting it to 15V.

Note 1: Parameter measured at trip point of latch with $V_{pin2}=0$. Note 2: Gain defined as $A=\Delta V_{pin1}/\Delta V_{pin3}$; $0 \le V_{pin3} \le 0.8V$.

Note 3: These parameters, although guaranteed, are not 100% tested in production.

Pin functions

Ν	Function	Description	
1	COMP	This pin is the Error Amplifier output and is made for loop compensation.	
2	V _{FB}	This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.	
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.	
4	R _T /C _T	The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor R_T to V_{ref} and capacitor C_T to ground.	
5	GROUND	This pin is the combined control circuitry and power ground.	
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sink by this pin.	
7	V _{cc}	This pin is the positive supply of the integrated circuit.	
8	V _{ref}	This is the reference output. It provides charging current for capacitor C _T through resistor R _T .	

Application information

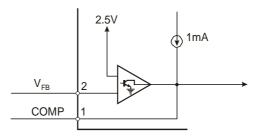
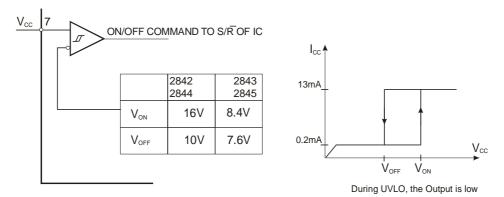
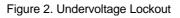




Figure 1. Error Amp Configuration

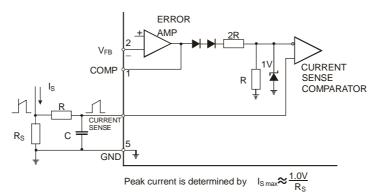
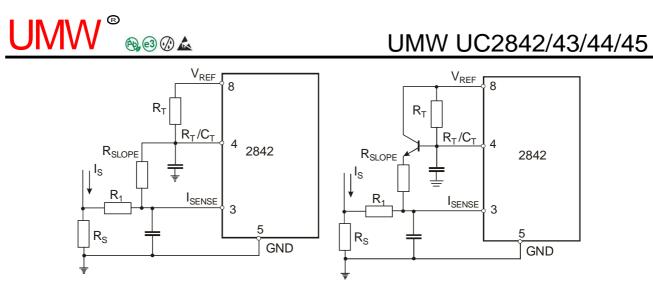
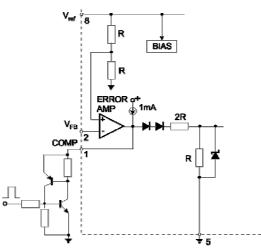
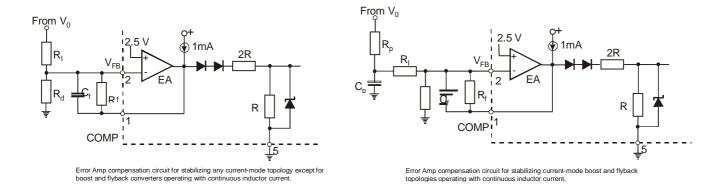




Figure 3. Current Sense Circuit



SCR must be selected for a holding current of less than 0.5mA. The simple two transistor circuit can be used in place of the SCR as shown.

Figure 5. Latched Shutdown

UMW UC2842/43/44/45

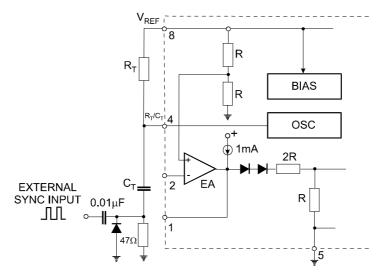


Figure 7. External Clock Synchronization

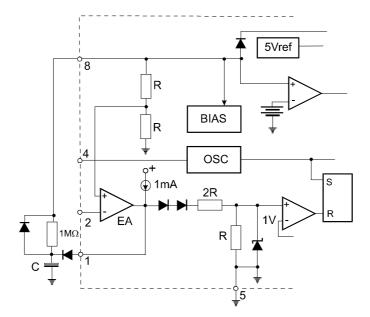


Figure 8. Soft-Start Circuit

UMW UC2842/43/44/45

Typical Performance Characteristics

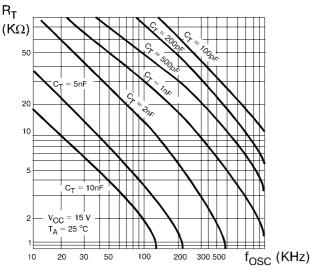


Figure 1. Timing Resistor vs. Oscillator Frequency

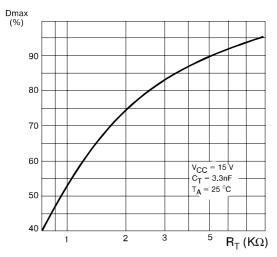
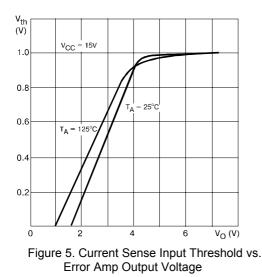
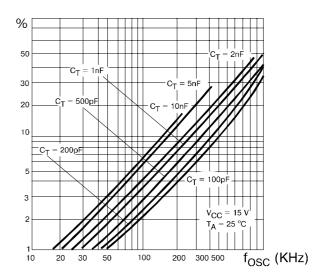
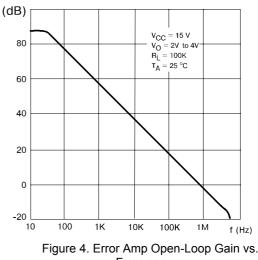
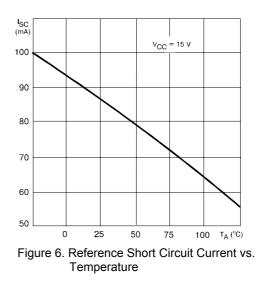





Figure 3. Maximum Output Duty Cycle vs. Timing Resistor (UC3842/43)



.,

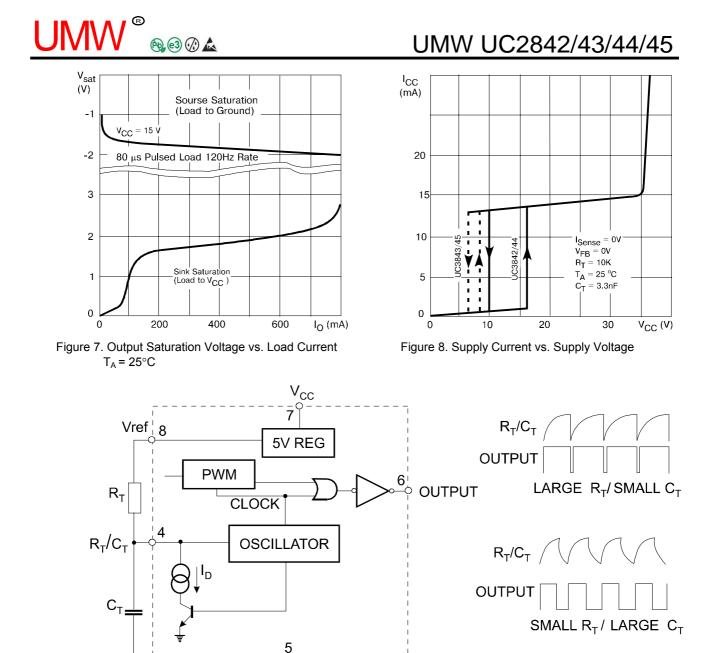


Figure 9. Oscillator and Output Waveforms

GND

Ordering information

Order code Package		Baseqty	Deliverymode	
UMW UC2842B	SOP-8	2500	Tape and reel	
UMW UC2843B	SOP-8	2500	Tape and reel	
UMW UC2844B	SOP-8	2500	Tape and reel	
UMW UC2845B SOP-8		2500	Tape and reel	