ОТОМО

KA3842B/KA3843B/KA3844B/KA3845B high -performance current mode controller

Overview and characteristics

KA3842B/KA3843B/KA3844B/KA3845B is a high -performance frequency frequency current mode controller. They are designed for the application of offline converters and DC-DC converters, providing designers with low-cost solutions with the least external components. These integrated circuits have a fine -tuning oscillator, temperature compensation reference power supply, high -gain error placing large device, current detection comparator, and high -current MOSFET output. It also includes the protection function, including input and under pressure locking, cycle -by -cycle current limit, programmable output dead zone time, and locks used for single pulse measuring.

Main features

 Owacing voltage lock circuit
low start current (<0.3mA)
Stable internal band gap benchmark voltage source
Large -current chart column output (drive current reaches 1A) 5. The operating frequency can reach 500kHz

6. Automatic negative feedback

compensation circuit

7. Pulse current limit

8. Enhanced load response characteristics

Frame diagram

SOP-8

DIP-8

Discover end function

符号	功能	序号	符号	功能
COMP	比较端	5	GND	地
V_{FB}	负反馈	6	OUTPUT	输出
I _{SENSE}	电流灵敏度	7	Vcc	电源
R _T /C _T	振荡端	8	V _{REF}	参考电压
	符号 COMP V _{FB} I _{SENSE} R _T /C _T	符号 功能 COMP 比较端 VFB 负反馈 Isense 电流灵敏度 RT/CT 振荡端	符号 功能 序号 COMP 比较端 5 VFB 负反馈 6 Isense 电流灵敏度 7 RT/CT 振荡端 8	符号 功能 序号 符号 COMP 比较端 5 GND VFB 负反馈 6 OUTPUT Isense 电流灵敏度 7 Vcc RT/CT 振荡端 8 VREF

The maximum rated value (unless special explanation, tamb = 25 °C)

Parameter name	Symbol	Value	Unit
Voltage	Vcc	30	V
Output current	Io	±1	А
Error amplifier current	Isink (EA)	10	mA
Error amplifier input voltage	Vin(EA)	-0.3 ~ +6.3	V
Power consumption	PD(DIP)	1	W
Working temperature	Tamb	0~70	°C
Storage temperature	Tstg	-55 ~ 150	°C

Electric Special (unless specifically explained, $v \in C = 15v$ note 1, $v = 10k$, $c = 5.5w$, $r = 5.5w$, $r = 10k$	Electric special (unless specified	cally explained, VCC = 1	.5V Note 1, RT = 10k ,	CT = 3.3NF, TAMB =	0 °C ~ 70 °C)
---	------------------------------------	--------------------------	------------------------	--------------------	---------------

Parameter name	Symbol	Test condition	Mini	Typical	Max	Unit
The benchmark power part						
The reference voltage	V_{ref}	Tj=25C, I _{ref} =1mA	4.9	5	5.1	V
Linear adjustment rate	Regline	12V≤Vcc≤25V	-	6	20	mV
Load adjustment rate	Regload	1mA≤ I _{ref} ≤20mA	-	6	25	mV
Short -circuit output current	Isc	Tamb=25°C	-30	-80	-180	mA
Oscillating part						
Oscillation frequency	f _{osc}	Tj=25℃	47	52	57	kHz
Frequency voltage characteristics	Δf/ΔV	12V≤Vcc≤25V	-	0.2	1	%
Amplitude of oscillation	V _{osc}	Pin4 Foot peak value	-	1.6	-	Vpp
Error amplifier part (EA)						
Input bias current	I _{IB}	V _{FB} =5.0V	-	-0.1	-2	μA
Feedback input voltage	V _{FB}	VFB=Vcomp	2.42	2.5	2.58	V
Open-loop voltage gair	A _{VOL}	2V≤V _O ≤4V	60	90	-	dB
Power rejection ratio	PSRR	12V≤V _{CC} ≤25V	60	70	-	dB
Output irrigation curren	Isink	V _{FB} =2.7V, V _{comp} =1.1V	2	6.5	-	mA
Output source current	Isource	$V_{FB} = 2.3 V, V_{comp} = 5.0 V$	-0.5	-0.9	-	mA
Output high level	V _{OH}	V_{FB} =2.3V, R_L =15k Ω to GND	5	6.4	-	V
Output low level	V _{OL}	$V_{FB} = 2.7 V, R_L = 15 k\Omega$ to Vref	-	0.87	1.1	V

Current sensitivity part

	purt						
Gain	A _V	(Notes 2 and 3)	2.85	3	3.15	V/V	
Maximum input threshol	^d Vth	V _{comp} =5.0V (Notes 2)	0.9	1	1.1	V	
Power supply voltage suppression ratio	PSRR	12V≤V _{CC} ≤25V (Notes 2)	-	70	-	dB	
Input bias current	I_{IB}		-	-2	-10	μA	
Output part							
Output low loval	M	I _{SINK} =20mA	-	0.1	0.4	V	
Output low level	V OL	I _{SINK} =200mA	-	1.5	2.2	V	
Output high level	V	Isource=20mA	13	13.5	-	V	
Output lingh level	V _{OH}	I _{SOURCE} =200mA	12	13	-	V	
Rise time	tr	C _L =1.0 nF	-	50	150	ns	
Descent time	tf	C _L =1.0 nF	-	50	150	ns	
UVLO circuit							
Starting threshold	Vstart	KA3842B/KA3844B	14.5	15.5	17.5	V	
		KA3843B/KA3845B	7.8	8.3	9	V	
Maintain voltage	Merici	KA3842B/KA3844B	8.5	9.8	11.5	V	
	V hold	KA3843B/KA3845B	7	7.6	8.2	V	
PWM part	PWM part						
Maximum duty ratio	56	KA3842B/KA3843B	90	94	-	%	
	DCmax	KA3844B/KA3845B	45	45 48 5	50	%	
Minimum duty ratio	DCmin		-	-	0	%	
Quiescent Current							

Starting current I.	T	KA3842B/KA3844B	-	0.26	0.5	mA
		KA3843B/KA3845B	-	0.13	0.5	mA
Working current	Icc	VFB =Vsense =0V	-	11	17	mA
ZENER voltage	Vz	Icc=25mA	-	34	-	V

Note:

1. Adjust the VCC to the circuit to start and set it to $15 \ensuremath{\mathsf{V}}$

2. Parameters measured at the lock -jump point of jumping point

3. Definition of gain as: a v = vcomp/ vSense; 0

VSense 0.8V

When there is a peak current related to capacity load, you need to consider the groundingtechnology carefully. Timing a nd bypass capacitors must be installed at 5 feet and grounded.

The transistor and a 5K potentiometer are used to sampling the waveform and send the sloping waveform to the 3 pin

Impurd pressure control (UVLO)

When entering the underwriting, the output driver is placed in a high resistance state. The 6 foot must use a leakage resi

stance to prevent the leakage current from driving the power switch.

Error Putting Large Connection

Error amplifier can push and output 0. 5mA current

Peak current (IS) is defined as: IS (MAX) $\approx 1.0V/R$ S A small RC filtering network is required to suppress the transient response of the switch **Oscillator waveform and maximum duty cycle**, period

The oscillating thing capacitor of is charged by the there by Ki and discharged by an internal current source. The internal clock signal is output driven to a low level during discharge. The selection of RT and CT can simultaneously determine the oscillation period and the maximum duty cycle. The time of charge and discharge is determined by the following formula

KA384xB can be turned off in two ways: by raising the 3-pin voltage above 1V or by lowering the 1pin voltage to the ground level of the two diodes

Both methods make the output of the PWM comparator high within the forward voltage drop (refer to the internal block diagram). The PWM latch trigger is reset prefertively to keep the output low until the next clock cycle after the pin 1 or pin 3 off signal is removed. An example of an external latch-off is achieved by adding a unidirectional thyristor (SCR), which will reset when the supply voltage VCC falls below the UVLO threshold. At this point, the SCR is allowed to reset when the reference voltage is turned off.

A portion of the oscillator slope can be corrected with a current detection signal to allow slope compensation in converter s requiring more than 50% duty cycle. Capacitor C and resistor R2 form a filter to suppress switching spikes on rising edg

