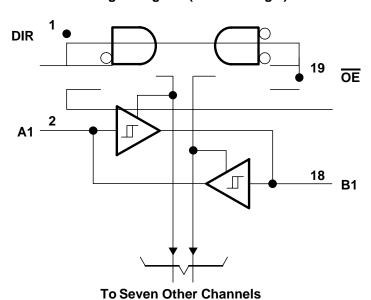


1 Features

- 3-State Outputs Drive Bus Lines Directly
- PNP Inputs Reduce DC Loading on Bus Lines
- Hysteresis at Bus Inputs Improves Noise Margins
- Typical Propagation Delay Times Port to Port, 8 ns

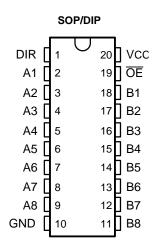
2 Applications


- Building Automation
- · Electronic Point of Sale
- · Factory Automation and Control
- · Test and Measurement

3 Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

The 74HC245 devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can disable the device so that the buses are effectively isolated.


4 Logic Diagram (Positive Logic)

5 Device Comparison Table

TYPE	I _{OL} (SINK CURRENT)	I _{OH} (SOURCE CURRENT)
74HC245	24 mA	−15 mA

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DECODINE		
NO.	NAME	I/O	DESCRIPTION		
1	DIR	I	Controls signal direction; Low = Bx to Ax, High = Ax to Bx		
2	A1	I/O	Channel 1, A side		
3	A2	I/O	Channel 2, A side		
4	A3	I/O	Channel 3, A side		
5	A4	I/O	Channel 4, A side		
6	A5	I/O	Channel 5, A side		
7	A6	I/O	Channel 6, A side		
8	A7	I/O	Channel 7, A side		
9	A8	I/O	Channel 8, A side		
10	GND	_	Ground		
11	B8	O/I	Channel 8, B side		
12	B7	O/I	Channel 7, B side		
13	В6	O/I	Channel 6, B side		
14	B5	O/I	Channel 5, B side		
15	B4	O/I	Channel 4, B side		
16	В3	O/I	Channel 3, B side		
17	B2	O/I	Channel 2, B side		
18	B1	O/I	Channel 1, B side		
19	ŌĒ	I	Active low output enable; Low = all channels active, High = all channels disabled (high impedance)		
20	V _{CC}	_	Power supply		

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply voltage		7	V
V_{I}	Input voltage ⁽¹⁾		7	V
T_J	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ All voltage values are with respect to GND.

7.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2500		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1500	V

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾			MIN	TYP ⁽¹⁾	MAX	UNIT	
V_{IH}	High-level input voltage			_		2			V
V_{IL}	Low-level input voltage			74HC245				0.8	٧
V _{IK}	Input clamp voltage		V _{CC} = MIN,	$I_{I} = -18 \text{ mA}$				-1.5	V
	Hysteresis $(V_{T+} - V_{T-})$	A or B	V _{CC} = MIN			0.2	0.4		V
			$V_{CC} = MIN,$	$I_{OH} = -3 \text{ mA}$		2.4	3.4		
V_{OH}	High-level output voltage)	$V_{IL} = V_{IL(max)}$ $V_{IH} = 2 V$,	I _{OH} = MAX		2			V
			V _{CC} = MIN,	I _{OL} = 12 mA				0.4	
V_{OL}	Low-level output voltage		$V_{IH} = 2 V,$ $V_{IL} = V_{IL(max)}$	I _{OL} = 24 mA	74HC245			0.5	V
I _{OZH}	Off-state output current, high-level voltage applie	d	$\frac{V_{CC}}{OE} = MAX,$ OE at 2 V	V _O = 2.7 V				20	μΑ
I _{OZL}	Off-state output current, low-level voltage applied	l	$\frac{V_{CC}}{OE}$ = MAX,	V _O = 0.4 V				-200	μΑ
	Input current at	A or B		V _I = 5.5 V				0.1	
I _I	maximum input voltage	DIR or OE	$V_{CC} = MAX$	V _I = 7 V				0.1	mA
I _{IH}	High-level input current	•	V _{CC} = MAX,	V _{IH} = 2.7 V				20	μA
I _{IL}	Low-level input current		$V_{CC} = MAX$,	$V_{IL} = 0.4 V$				-0.2	mA
Ios	Short-circuit output curre	nt ⁽²⁾	V _{CC} = MAX			-40		-225	mA
I _{cc}		Total, outputs high					48	70	
	Supply current	Total, outputs low	V _{CC} = MAX	Outputs open			62	90	mA
		Outputs at high Z					64	95	

All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

7.6 Switching Characteristics

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Figure 2)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C 45 p D 667 O		8	12	
t _{PHL}	Propagation delay time, high- to low-level output	$C_L = 45 \text{ pF}, R_L = 667 \Omega$		8	12	ns
t _{PZL}	Output enable time to low level	C 45 p		27	40	
t _{PZH}	Output enable time to high level	$C_L = 45 \text{ pF}, R_L = 667 \Omega$		25	40	ns
t _{PLZ}	Output disable time from low level			15	25	
t _{PHZ}	Output disable time from high level	$C_L = 5 \text{ pF}, R_L = 667 \Omega$		15	28	ns

7.7 Typical Characteristics

 V_{CC} = 5 V, T_A = 25°C, C_L = 45 pF, R_L = 667 Ω

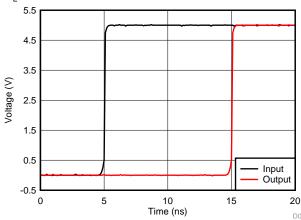
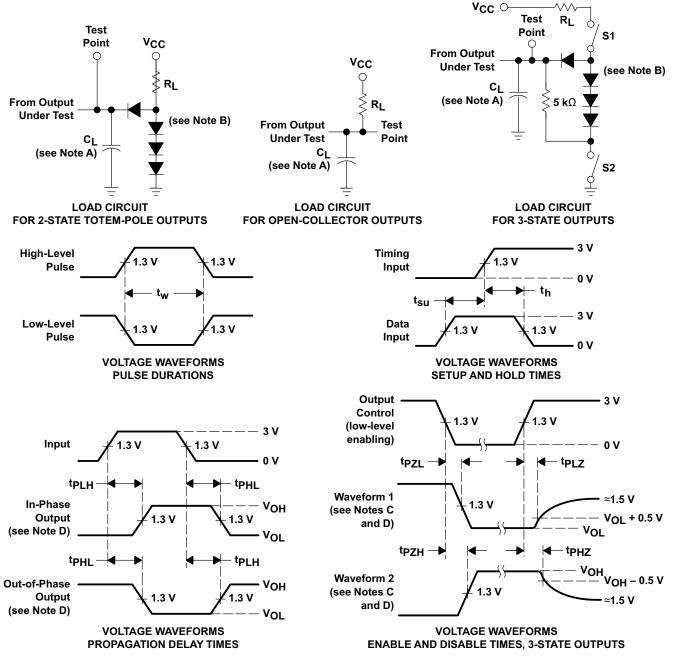



Figure 1. Simulated Propagation Delay From Input to Output

8 Parameter Measurement Information

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for t_{PLH} , t_{PHL} , t_{PHZ} , and t_{PLZ} ; S1 is open and S2 is closed for t_{PZH} ; S1 is closed and S2 is open for t_{PZL} .
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \ \Omega$, $t_\Gamma \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
 - G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

9 Detailed Description

9.1 Overview

The 74HC245 uses Schottky transistor logic to perform the standard '245 transceiver function. This standard logic function has a common pinout, direction select pin, and active-low output enable. When the outputs are disabled, the A and B sides of the device are effectively isolated.

9.2 Functional Block Diagram

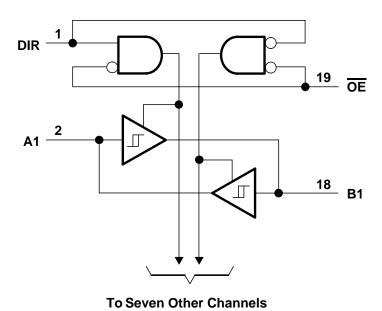


Figure 3. Logic Diagram (Positive Logic)

9.3 Feature Description

9.3.1 3-State outputs

The 3-state outputs can drive bus lines directly. All outputs can be put into high impedance mode through the $\overline{\text{OE}}$ pin.

9.3.2 PNP Inputs

This device has PNP inputs which reduce dc loading on bus lines.

9.3.3 Hysteresis on Bus Inputs

The bus inputs have built-in hysteresis that improves noise margins.

9.4 Device Functional Modes

The 74HC245 performs the standard '245 logic function. Data can be transmitted from A to B or from B to A depending on the DIR pin value, or the A and B sides can be isolated from one another by setting the $\overline{\text{OE}}$ pin HIGH.

Table 1. Function Table

INP	UTS	OPERATION		
ŌĒ	DIR	OPERATION		
L	L	B data to A bus		
L	Н	A data to B bus		
Н	Х	Isolation		

TYPICAL OF ALL OUTPUTS VCC 9 kΩ NOM TOUTPUTS Output

Figure 4. Schematics of Inputs and Outputs