

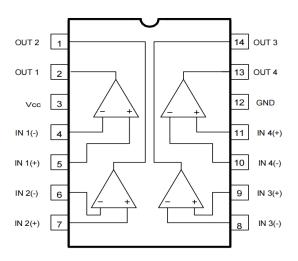
Four comparator

Description:

LM339 is a four comparator integrated circuit mainly used in consumer and industrial electronic products for level detection and low-level detection. Adopting DIP14 and SOP14 packaging forms.

Features:

-Single or dual power operation


-Low input bias current: 25nA (typical)

-Low input offset current: \pm 5.0nA (typical)

-Low output saturation voltage: 130mV

-Compatible with TTL and CMOS

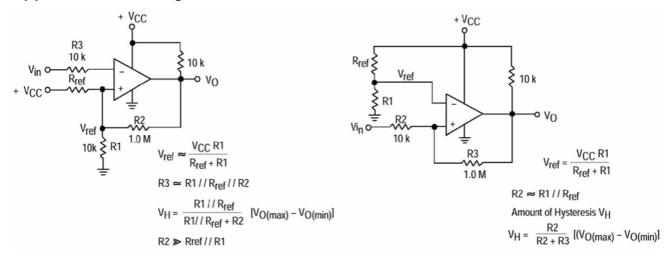

Pin definition:

Pin NO.	Function	Symbols	Pin NO.	Function	Symbols	
1	Output 2	OUT2	8	Inverted input 3	IN3 (-)	
2	Output 1	OUT1	9	Positive phase input 3	IN3 (+)	
3	power supply	Vcc	10	Inverted input 4	IN4 (-)	
4	Inverted input 1	IN1 (-)	11	Positive phase input 4	IN4 (+)	
5	Positive phase input 1	IN1 (+)	12	grounds	GND	
6	Inverted input 2	IN2 (-)	13	Output 4	OUT4	
7	Positive phase input 2	IN2 (+)	14	Output 3	OUT3	

Internal circuit diagram:

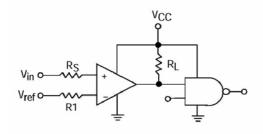
Absolute Maximum Ratings: (Absolute maximum rated value, Tamb=25 unless otherwise specified)

parameter	symbol	value	unit
supply voltage	Vcc	$36 \text{ or } \pm 18$	V
Input differential voltage range	VIDR	36	V
Input common mode voltage range	VICMR	-0.3^{\sim}Vcc	V
output current	ISC	50	mA
consumption (*)	PD	1.0	W
Ambient Temperature	Tamb	0~70	$^{\circ}$ C
Storage temperature	Tstg	-65 [~] 150	$^{\circ}\!\mathbb{C}$

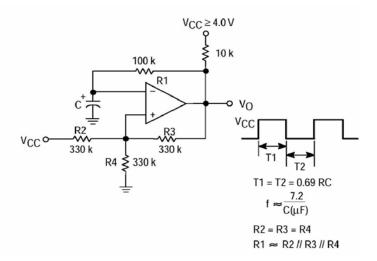

Note (*): When used above 25 , for every 1 increase, the power consumption decreases by 8mW.

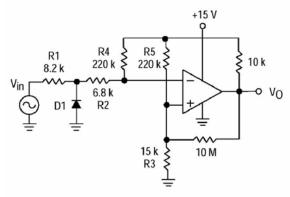
Electrical characteristics (if there are no other regulations, Vcc=5V, Tamb=25)

	T	C 1 1				
parameter	Test conditions	Symbols	min	typ	max	unit
input offset		VI		± 2.0	±5.0	17
voltage	0°C≤Ta ≤70°C	VIo			±9.0	mV
Input Offset		TT		±5.0	±50	Α
Current	0°C≤Ta ≤70°C	IIo			±150	nA
Innut Dies Cument		TTD		25	250	то Л
Input Bias Current	0°C≪Ta ≪70°C	IIB			400	nA
Input common mode		VICD	0		Vcc-1.5	V
voltage range	0°C≤Ta≤70°C	VICR	0		Vcc-2.0	
Power supply	RL=∞	т		0.8	2.0	mA
current	Ru=∞, Vcc=30V	Icc		1.0	2.5	
Gain	RL≽ 15K, Vcc=15V	Gv	50	200		V/mV
Large signal	VIN=TTL logic swing, VREF=1.4V,	PDG		200		ns
response time	VRL=5. OV, RL=5. 1K	tRES		300		
response time	VRL=5. OV, RL=5. 1K	tRES		1.3		ns
Input differential voltage		VID			Vcc	V
Output notch current	$VIN(-) \ge 1.0V, VIN(+)=0V, Vo \le 1.5V$	ISINK	6. 0	16		mA
	$VIN(-) \ge 1.0V$, $VIN(+) = 0V$, $IsINK \le 4.0mA$			130	400	
output saturation voltage	$VIN(-) \geqslant 1.0V$, $VIN(+)=0V$, $ISINK \leqslant 4.0mA$	VSAT			700	mV
	0°C≤Ta ≤70°C					
Output leakage	$VIN(+) \ge 1.0V, VIN(-) = 0V, Vo = 5.0V$			0. 1		-
current	$VIN(+) \ge 1.0V, VIN(-) = 0V, Vo = 30V$	IOL			1000	nA
	0°C≤Ta ≤70°C					


Application diagram

Inverse comparator with hysteresis

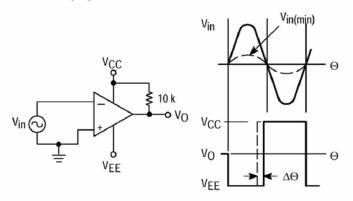

Positive phase comparator with hysteresis



 R_S = Source Resistance R1 $\approx R_S$

Logi	c	Device	V _{CC}	R _L kΩ		
CMC	S	1/4 MC14001	+15	100		
TTL		1/4 MC7400	+5.0	10		

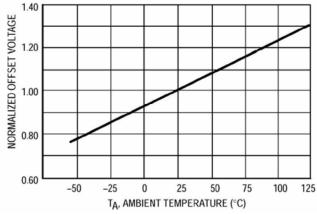
logical drive


D1 prevents input from going negative by more than 0.6 V.

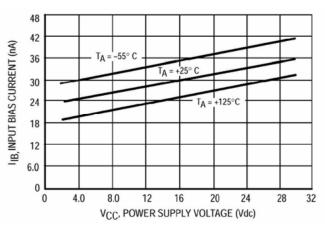
$$R1 + R2 = R3$$

$$R3 \leq \frac{R5}{10} \ \ \text{for small error in zero crossing}$$

Zero crossing detector (single power application)

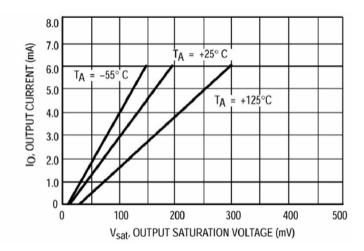

square-wave oscillator

 $V_{in(min)} \approx 0.4 \text{ V}$ peak for 1% phase distortion ($\Delta\Theta$).



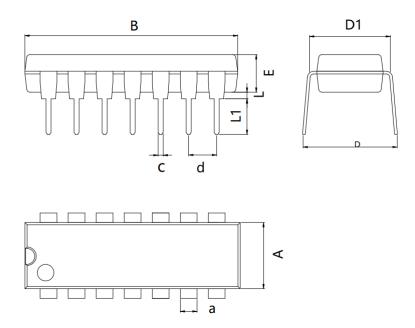
Zero crossing detector (dual power application)

characteristic curve

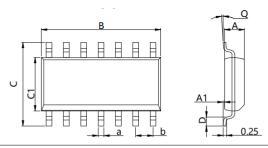


Normal input offset voltage

Input Bias Current



Output notch current and output saturation voltage



Packaging dimensions DIP14

Dimensions In Millimeters(DIP14)											
Symbol:	Α	В	D	D1	E	L	L1	а	С	d	
Min:	6.10	18.94	8.40	7.42	3.10	0.50	3.00	1.50	0.40	2.54.000	
Max:	6.68	19.56	9.00	7.82	3.55	0.70	3.60	1.55	0.50	2.54 BSC	

S0P14

Dimensions In Millimeters(SOP14)										
Symbol: A A1 B C C1 D Q a b										
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45		