Features

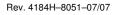
- 80C52 Compatible
 - 8051 Pin and Instruction Compatible
 - Four 8-bit I/O Ports
 - Three 16-bit Timer/Counters
 - 256 Bytes Scratchpad RAM
- High-speed Architecture
- 40 MHz at 5V, 30 MHz at 3V
- X2 Speed Improvement Capability (6 Clocks/Machine Cycle)
- 30 MHz at 5V, 20 MHz at 3V (Equivalent to 60 MHz at 5V, 40 MHz at 3V)
- Dual Data Pointer
- On-chip ROM/EPROM (8Kbytes)
- Programmable Clock Out and Up/Down Timer/Counter 2
- Asynchronous Port Reset
- Interrupt Structure with
 - 6 Interrupt Sources
 - 4 Level Priority Interrupt System
- Full Duplex Enhanced UART
 - Framing Error Detection
 - Automatic Address Recognition
- Low EMI (Inhibit ALE)
- Power Control Modes
 - Idle Mode
 - Power-down Mode
 - Power-off Flag
- Once Mode (On-chip Emulation)
- Power Supply: 4.5 5.5V, 2.7 5.5V
- Temperature Ranges: Commercial (0 to 70°C) and Industrial (-40 to 85°C)
- Packages: PDIL40, PLCC44, VQFP44 1.4, PQFP44 (13.9 footprint)

Description

TS80C52X2 is high performance CMOS ROM, OTP, EPROM and ROMless versions of the 80C51 CMOS single chip 8-bit microcontroller.

The TS80C52X2 retains all features of the 80C51 with extended ROM/EPROM capacity (8 Kbytes), 256 bytes of internal RAM, a 6-source, 4-level interrupt system, an on-chip oscilator and three timer/counters.

In addition, the TS80C52X2 has a dual data pointer, a more versatile serial channel that facilitates multiprocessor communication (EUART) and an X2 speed improvement mechanism.


The fully static design of the TS80C52X2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The TS80C52X2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

8-bit Microcontroller 8 Kbytes ROM/OTP, ROMIess

TS80C32X2 TS87C52X2 TS80C52X2 AT80C32X2 AT80C52X2 AT87C52X2

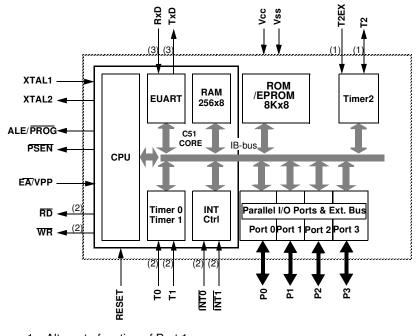


Table 1. Memory Size

	ROM (bytes)	EPROM (bytes)	TOTAL RAM (bytes)
TS80C32X2	0	0	256
TS80C52X2	8k	0	256
TS87C52X2	0	8k	256

Block Diagram

Notes: 1. Alternate function of Port 1 2. Alternate function of Port 3

SFR Mapping

The Special Function Registers (SFRs) of the TS80C52X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

	Bit									
	Addressable	Non Bit Addressable								
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		
F8h										
F0h	B 0000 0000									
E8h										
E0h	ACC 0000 0000									
D8 h										
D0 h	PSW 0000 0000									
C8 h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000				
C0 h										
B8h	IP XX00 0000	SADEN 0000 0000								
B0h	P3 1111 1111							IPH XX00 0000		
A8h	IE 0X00 0000	SADDR 0000 0000								
A0h	P2 1111 1111		AUXR1 XXXX XXX0							
98h	SCON 0000 0000	SBUF XXXX XXXX								

TL1

0000 0000

DPH

0000 0000

3/B

TH0

0000 0000

4/C

TH1

0000 0000

5/D

AUXR

XXXXXXX0

6/E

Tab

Reserved

0000 0000

P1

1111 1111 TCON

0000 0000

P0

1111 1111

0/8

90h

88h

80h

XXXX XXXX

TMOD

0000 0000

SP

0000 0111

1/9

TL0

0000 0000

DPL

0000 0000

2/A

FFh

F7h

EFh

E7h

DFh

D7h

CFh

C7h

BFh

B7h

AFh

A7h

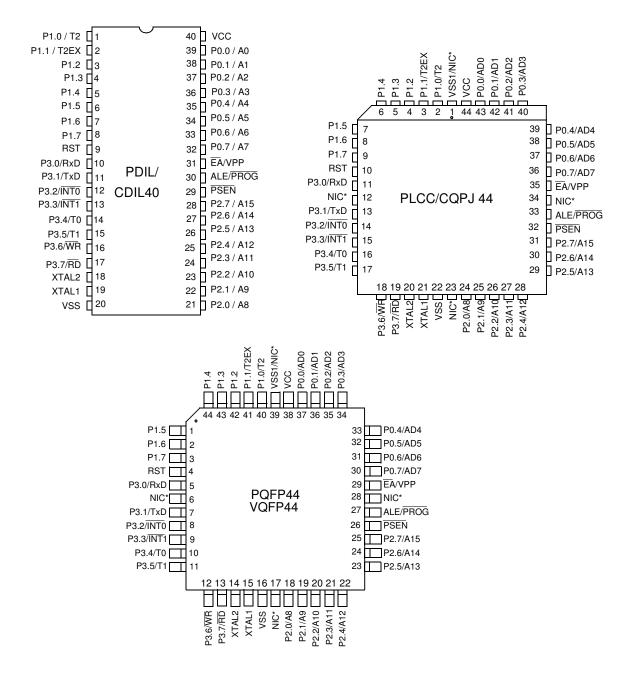
9Fh

97h

8Fh

87h

CKCON


XXXX XXX0

PCON

00X1 0000

7/F

Pin Configuration

*NIC: No Internal Connection

Mnemonic	Pin Number			Туре	Name and Function		
	DIL	LCC	VQFP 1.4				
V _{SS}	20	22	16	I	Ground: 0V reference		
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.		
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation		
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus		
					during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.		
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As		
					inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for Port 1 include:		
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout		
	1	2	40	1/0	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction		
	2	3	41	I	Control		
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As		
					inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high- order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4		
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.		
	10	11	5	1	RXD (P3.0): Serial input port		
	11	13	7	0	TXD (P3.1): Serial output port		
	12	14	8	I	INT0 (P3.2): External interrupt 0		

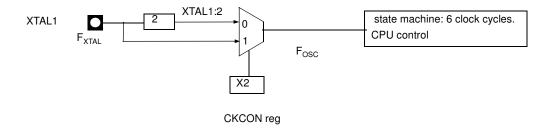
6 **TS8xCx2X2**

Mnemonic	l	Pin Nu	mber	Туре	Name and Function	
DIL LCC 1.4						
	13	15	9	I	INT1 (P3.3): External interrupt 1	
	14	16	10	I	T0 (P3.4): Timer 0 external input	
	15	17	11	I	T1 (P3.5): Timer 1 external input	
	16	18	12	0	WR (P3.6): External data memory write strobe	
	17	19	13	0	RD (P3.7): External data memory read strobe	
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .	
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.	
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.	
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.	
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and inp	
					to the internal clock generator circuits.	
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier	

TS80C52X2 In comparison to the original 80C52, the TS80C52X2 implements some new features, which are: **Enhanced Features**

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag ٠
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

X2 Feature The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power ٠
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram

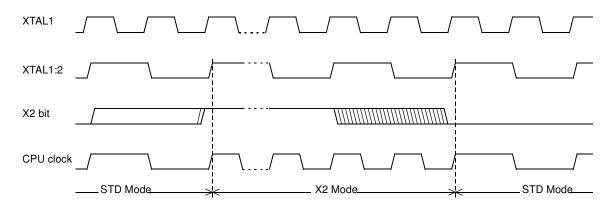


Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

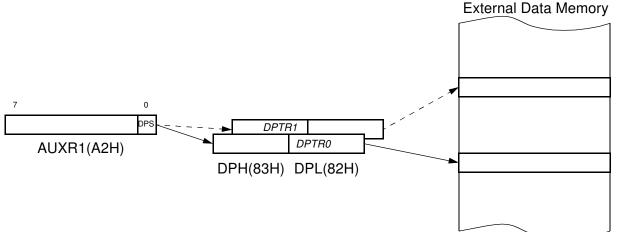
CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	X2		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not se	et this bit.			
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not se	et this bit.			
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not se	et this bit.			
3	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	X2	Clear to selee		k bit eriods per mac ds per machin					

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)


Dual Data Pointer Register (Ddptr)

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

Table 4. AUXR1: Auxiliary Register 1

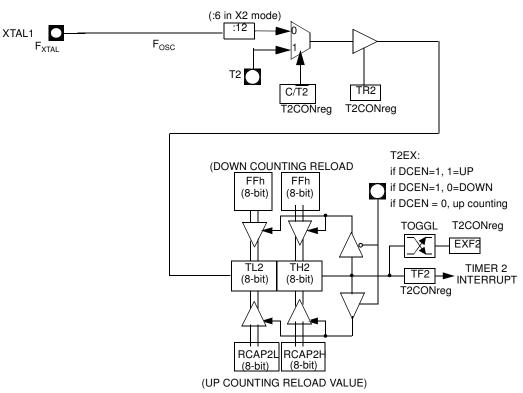
7	6	5	4	3	2	1	0	
-	-	-	-	GF3	0	-	DPS	
Bit Number	Bit Mnemonic	Description	ı					
7	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.		
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.		
3	GF3	This bit is a	general purp	ose user flag				
2	0	Reserved Always stud	Reserved Always stuck at 0					
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
0	DPS	Data Pointe Clear to sel Set to selec						

Reset Value = XXXX XXX0 Not bit addressable

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE


; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added 00A2 AUXR1 EQU 0A2H 0000 909000MOV DPTR,#SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 : switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A, atDPTR ; get a byte from SOURCE 000B A3 INC DPTR : increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX atDPTR,A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

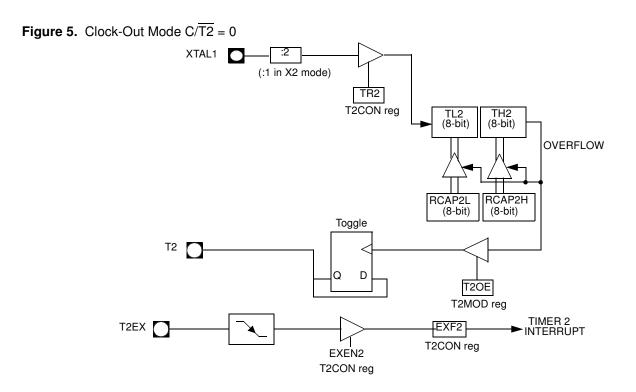
Timer 2	The timer 2 in the TS80C52X2 is compatible with the timer 2 in the 80C52. It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 5) and T2MOD register (See Table 6). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.
	Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel 8-bit Microcontroller Hardware description.
	Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Cap- ture and Baud Rate Generator Modes.
	In TS80C52X2 Timer 2 includes the following enhancements:
	Auto-reload mode with up or down counter
	Programmable clock-output
Auto-reload Mode	The Auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto- matic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 4. In this mode the T2EX pin controls the direction of count.
	When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.
	When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.
	The EXF2 bit toggles when timer 2 overflows or underflows according to the the direc- tion of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

Programmable Clock-output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 5). The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).


Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

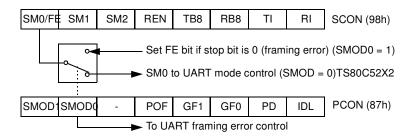
It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

14 **TS8xCx2X2**

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#		
Bit Number	Bit Mnemonic	Description							
7	TF2	Timer 2 overf Must be cleare Set by hardwa	ed by software		CLK = 0 and T	CLK = 0.			
6	EXF2	Set when a ca EXEN2=1. When set, cau interrupt is ena Must be cleare	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 nterrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)						
5	RCLK	Receive Cloc Clear to use the Set to use time	mer 1 overflov			•			
4	TCLK	Transmit Cloc Clear to use the Set to use time	mer 1 overflov						
3	EXEN2	Timer 2 Exter Clear to ignore Set to cause a detected, if tim	e events on T2 capture or re	2EX pin for tim load when a ne	egative transit		pin is		
2	TR2	Timer 2 Run of Clear to turn of Set to turn on	ff timer 2.						
1	C/T2#	Clear for timer Set for counte	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.						
0	CP/RL2#	Timer 2 Captu If RCLK=1 or T timer 2 overflo Clear to Auto-I EXEN2=1. Set to capture	TCLK=1, CP/F w. reload on time	RL2# is ignored	or negative tra	insitions on T			

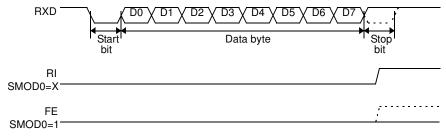
Reset Value = 0000 0000b Bit addressable


Table 6. T2MOD RegisterT2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	T2OE	DCEN	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
5	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	T2OE	Clear to prog	Fimer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.					
0	DCEN	Clear to disal		t up/down cour b/down counte				

Reset Value = XXXX XX00b Not bit addressable

TS80C52X2 Serial I/O Port	The serial I/O port in the TS80C52X2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates
Framing Error Detection	 Serial I/O port includes the following enhancements: Framing error detection Automatic address recognition Framing bit error detection is provided for the three asynchronous modes (modes 1, 2)
	and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 6).


Figure 6. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9.) bit is set.

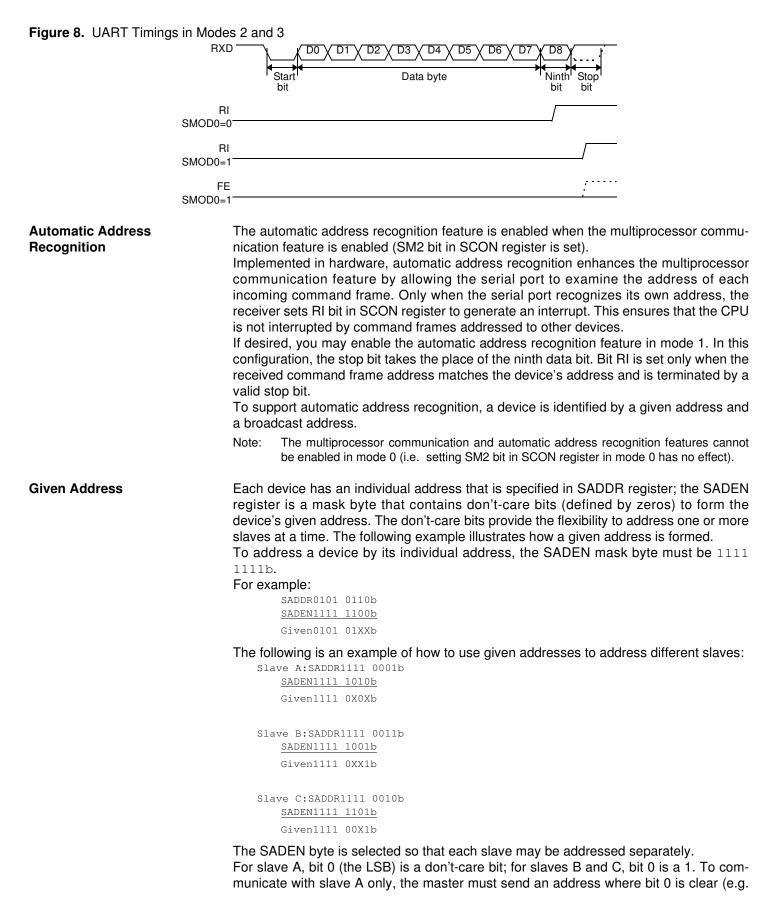

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 7. and Figure 8.).

Figure 7. UART Timings in Mode 1

18

1111 0000b).

For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR 0101 0110b SADEN 1111 1100b Broadcast =SADDR OR SADEN1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Broadcast1111 1X11b, Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Broadcast1111 1X11B, Slave C:SADDR=1111 0010b <u>SADEN1111 1101b</u>

Broadcast1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Reset AddressesOn reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and
broadcast addresses are XXXX XXXb (all don't-care bits). This ensures that the serial
port will reply to any address, and so, that it is backwards compatible with the 80C51
microcontrollers that do not support automatic address recognition.

 Table 7.
 SADEN Register

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0			
Reset Value = 0000 0000b Not bit addressable										
Table 8. S SADDR - S		gister ess Register	[.] (A9h)							

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

AIMEL

Table 9. SCON RegisterSCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI				
Bit Number	Bit Mnemonic	Description									
7	FE	Clear to reset Set by hardwa	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit								
	SM0	Refer to SM1	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit								
6	SM1	Serial port M SM0 SM1 0 0 0 1 1 0 1 1	0 0 0 Shift Register F _{XTAL} /12 (/6 in X2 mode) 0 1 1 8-bit UART Variable 1 0 2 9-bit UART F _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode)								
5	SM2	Clear to disab Set to enable	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.								
4	REN	Reception En Clear to disab Set to enable	le serial recep								
3	TB8	Transmitter Bi Clear to transi Set to transmi	mit a logic 0 in	the 9th bit.	modes 2 and 3	3.					
2	RB8	Cleared by ha Set by hardwa	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.								
1	TI	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.									
0	RI	Receive Inter Clear to ackno Set by hardwa 8. in the other	owledge interr are at the end		time in mode 0	, see Figure 7	7. and Figure				

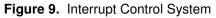
Reset Value = 0000 0000b Bit addressable

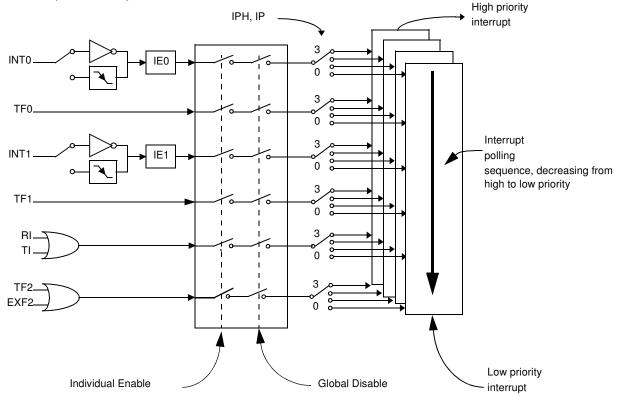
Table 10. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0				
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL				
Bit Number	Bit Mnemonic	Descriptio	Description								
7	SMOD1		Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.								
6	SMOD0	Clear to sel	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.								
5	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	POF	Clear to rec Set by hard	Power-off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.								
3	GF1	Cleared by		ral purpose us urpose usage							
2	GF0	Cleared by	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.								
1	PD	Cleared by	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.								
0	IDL	Clear by ha	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.								

Reset Value = 00X1 0000b Not bit addressable


Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.



Interrupt System

The TS80C52X2 has a total of 6 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2) and the serial port interrupt. These interrupts are shown in Figure 9.

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 12.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 13.) and in the Interrupt Priority High register (See Table 14.). shows the bit values and priority levels associated with each combination.

IPH.x	IP.x	Interrupt Level Priority		
0	0	0 (Lowest)		
0	1	1		
1	0	2		
1	1	3 (Highest)		

Table 11. Priority Level Bit Values

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level

are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

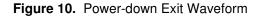
7	6	5	5 4 3 2 1								
EA	-	ET2	ET2 ES ET1 EX1 ET0								
Bit Number	Bit Mnemonic	Description	Description								
7	EA	Clear to disab Set to enable If EA=1, each	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.								
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	ET2	Clear to disab	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.								
4	ES	Clear to disab	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.								
3	ET1	Clear to disab	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.								
2	EX1	Clear to disab	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.								
1	ET0	Clear to disab	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.								
0	EX0	Clear to disab	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.								

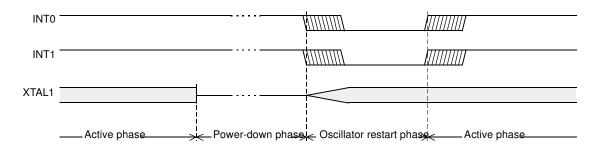
Reset Value = 0X00 0000b Bit addressable

Table 13. IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0			
-	-	PT2	PT2 PS PT1 PX1 PT0 PX0							
Bit Number	Bit Mnemonic	Descriptio	Description							
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	PT2		Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.							
4	PS		Serial port Priority bit Refer to PSH for priority level.							
3	PT1		verflow interr	upt Priority b y level.	it					
2	PX1		External interrupt 1 Priority bit Refer to PX1H for priority level.							
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.							
0	PX0		nterrupt 0 Pri KOH for priorit							

Reset Value = XX00 0000b Bit addressable


Table 14. IPH RegisterIPH - Interrupt Priority High Register (B7h)


7	6	5	4	3	2	1	0				
-	-	PT2H	PSH	PT1H	PX1H	РТОН	РХОН				
Bit Number	Bit Mnemonic	Description									
7	-	Reserved The value rea	teserved he value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	flow interrupt Priority Leve Lowest Highest		ı bit						
4	PSH	Serial port P PSH PS 0 0 0 1 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest								
3	PT1H	Timer 1 over PT1H PT1 0 0 1 0 1 1	flow interrupt <u>Priority Leve</u> Lowest Highest		ı bit						
2	PX1H		rrupt 1 Priori n <u>Priority Leve</u> Lowest Highest								
1	РТОН		flow interrupt Priority Leve Lowest Highest		ı bit						
0	РХОН		rrupt 0 Priori <u>Priority Leve</u> Lowest Highest								

Reset Value = XX00 0000b Not bit addressable

	ATTITUE ®
Idle mode	An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is pre- served in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.
	There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.
	The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured dur- ing normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.
	The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.
Power-down Mode	To save maximum power, a power-down mode can be invoked by software (Refer to Table 10., PCON register).
	In power-down mode, the oscillator is stopped and the instruction that invoked power- down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power- down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.
	Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 10. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C52X2 into power-down mode.

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

Note: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
ldle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
ldle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 15. The State of Ports During Idle and Power-down Modes

Note: 1. Port 0 can force a "zero" level. A "one" will leave port floating.

ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C52X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C52X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C52X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 16. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull- up	Weak pull- up	Float	Weak pull- up	Weak pull- up	Weak pull- up	Active

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 17.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

7	6	5	4	3	2	1	0			
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic	Descript	Description							
7	SMOD1		Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.							
6	SMOD0	Clear to s	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.							
5	-		Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF	Clear to r Set by ha	Power-off Flag Clear to recognize next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.							
3	GF1	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
2	GF0	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Cleared b	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Clear by	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.							

Table 17. PCON Register

PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 18. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	-	AO				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
2	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.					
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	AO	Clear to rest	ALE Output bit Clear to restore ALE operation during internal fetches. Set to disable ALE operation during internal fetches.								

Reset Value = XXXX XXX0b Not bit addressable

TS80C52X2

ROM Structure

The TS80C52X2 ROM memory is divided in three different arrays:

- the code array:8 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

ROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock BitsThe lock bits when programmed according to Table 19. will provide different level of pro-
tection for the on-chip code and data.

Table 19.	Program	Lock bits
-----------	---------	-----------

Program Lock Bits Security level LB1 LB2 LB3				
		LB3	Protection Description	
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset.

U: unprogrammed

P: programmed

Signature bytes

The TS80C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

Verify Algorithm

Refer to Section "Verify Algorithm".

EPROM Structure	The TS87C52X2 is divided in two different arrays:
-----------------	---

- the code array: 8 Kbytes
- the encryption array: 64 bytes

In addition a third non programmable array is implemented:

the signature array: 4 bytes

EPROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock Bits The three lock bits, when programmed according to Table 1., will provide different level of protection for the on-chip code and data.

Program Lock Bits				
Security level LB1 LB2 LB3		LB3	Protection Description	
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

U: unprogrammed

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

Signature Bytes

The TS80/87C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

EPROM Programming

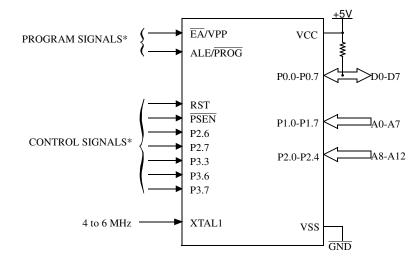
Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C52X2 is placed in specific set-up modes (See Figure 11.).

32 **TS8xCx2X2**

TS8xCx2X2

Control and program signals must be held at the levels indicated in Table 35.


Definition of terms

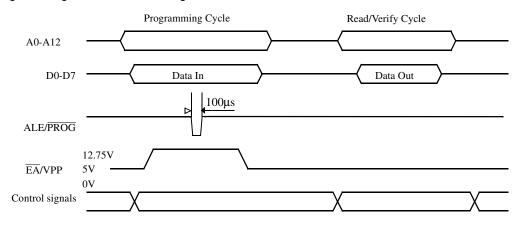
Address Lines: P1.0-P1.7, P2.0-P2.4 respectively for A0-A12
Data Lines: P0.0-P0.7 for D0-D7
Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.
Program Signals: ALE/PROG, EA/VPP.

Table 20.	EPROM Set-up	Modes
-----------	--------------	-------

Mode	RST	PSEN	ALE/ PROG	EA/ VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Ţ	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	IJ	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	IJ	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Л	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Ŀ	12.75V	1	0	1	1	0

Figure 11. Set-Up Modes Configuration

* See Table 31. for proper value on these inputs


	®
Programming Algorithm	The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.
	 To program the TS87C52X2 the following sequence must be exercised: Step 1: Activate the combination of control signals. Step 2: Input the valid address on the address lines. Step 3: Input the appropriate data on the data lines. Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V). Step 5: Pulse ALE/PROG once. Step 6: Lower EA/VPP from VPP to VCC
	Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 12.).
Verify Algorithm	Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C52X2.
	P 2.7 is used to enable data output.
	To verify the TS87C52X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 12.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 12. Programming and Verification Signal's Waveform

EPROM Erasure (Windowed Packages Only)

Erasure Characteristics

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of

12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

Signature Bytes The TS80/87C52X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 35. shows the content of the signature byte for the TS80/87C52X2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	2Dh	Product name: TS80C52X2
60h	ADh	Product name:TS87C52X2
60h	20h	Product name: TS80C32X2
61h	FFh	Product revision number

 Table 21.
 Signature Bytes Content

Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	40°C to 85°C
Storage Temperature	65°C to + 150°C
Voltage on V _{CC} to V _{SS}	0.5V to + 7 V
Voltage on V _{PP} to V _{SS}	0.5V to + 13 V
Voltage on Any Pin to V _{SS}	0.5V to V _{CC} + 0.5V
Power Dissipation	1 W ⁽²⁾
•	
	······································

- Notes: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
 - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

Power Consumption Measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating lcc.

DC Parameters for	TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 5V ± 10%; F = 0 to 40 MHz.
Standard Voltage	TA = -40°C to +85°C; $V_{SS} = 0 V$; $V_{CC} = 5V \pm 10\%$; F = 0 to 40 MHz.

Table 22.	DC Parameters in Standard Voltage
-----------	-----------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	> > >	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 200 \ \mu A^{(4)} \\ I_{OL} &= 3.2 \ m A^{(4)} \\ I_{OL} &= 7.0 \ m A^{(4)} \end{split}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$

TS8xCx2X2

Table 22.	DC Parameters in Standard	Voltage	(Continued)
-----------	---------------------------	---------	-------------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 mu$ A $I_{OH} = -3.2 mu$ A $I_{OH} = -7.0 mu$ A $V_{CC} = 5V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			v v v	I _{OH} = -100 μA I _{OH} = -1.6 mA I _{OH} = -3.5 mA V _{CC} = 5V ± 10%
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μA	Vin = 0.45V
ILI	Input Leakage Current			±10	μA	0.45V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μA	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz Ta = 25°C
I _{PD}	Power Down Current		20 (5)	50	μA	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{V}^{(3)}$
I _{cc} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) at12MHz 5.8 at16MHz 7.4	mA	$V_{CC} = 5.5 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			3 + 0.6 Freq (MHz) at12MHz 10.2 at16MHz 12.6	mA	V _{CC} = 5.5V ⁽⁸⁾
l _{cc} idle	Power Supply Current Maximum values, X1 mode: (7)			0.25+0.3 Freq (MHz) at12MHz 3.9 at16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

Table 23. DC Parameters for Low Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.45	V	l _{OL} = 0.8 mA ⁽⁴⁾
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	V	l _{OL} = 1.6 mA ⁽⁴⁾
V _{OH}	Output High Voltage, ports 1, 2, 3	0.9 V _{CC}			V	I _{OH} = -10 μA
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = -40 μA
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μA	Vin = 0.45V
I _{LI}	Input Leakage Current			±10	μA	$0.45V < Vin < V_{CC}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μA	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz Ta = 25°C
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μA	V_{CC} = 2.0 V to 5.5V ⁽³⁾ V_{CC} = 2.0 V to 3.3 V ⁽³⁾
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) at12MHz 3.4 at16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.3 Freq (MHz) at12MHz 4.6 at16MHz 5.8	mA	$V_{CC} = 3.3 V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.15 Freq (MHz) + 0.2 at12MHz 2 at16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

Notes: 1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 17.), V_{IL} = V_{SS} + 0.5V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.

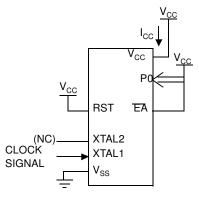
2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} - 0.5V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 15.).

Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 16.).

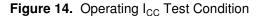
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:


TS8xCx2X2

Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.


- 7. For other values, please contact your sales office.
- Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 17.), V_{IL} = V_{SS} + 0.5V,

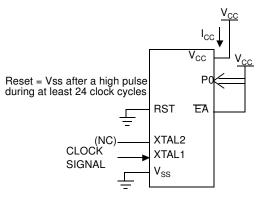

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

Figure 13. I_{CC} Test Condition, under reset

All other pins are disconnected.

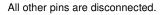
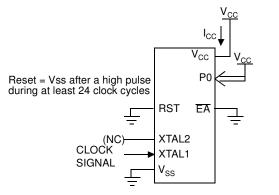
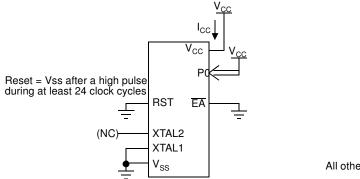
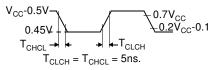



Figure 15. I_{CC} Test Condition, Idle Mode



All other pins are disconnected.


Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

ALE / PSEN

AC Parameters

Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.								
		LL = Time for Addr <u>ess Va</u> le for ALE Low to PSEN I							
	TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 \text{ V}$; $V_{CC} = 5\text{V} \pm 10\%$; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0 \text{ V}$; $V_{CC} = 5\text{V} \pm 10\%$; -M and -V ranges. TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 \text{ V}$; 2.7 V < $V_{CC} < 5.5\text{V}$; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0 \text{ V}$; 2.7 V < $V_{CC} < 5.5\text{V}$; -L range.								
	and ALE and respected. Hi		s will be guaranteed if can be used, but timings	r Port 0, Port 1, 2 and 3, these capacitances are will then be degraded.					
		-М	-V	-L					
	Port 0	100	50	100					
	Port 1, 2, 3 80 50 80								

100

Table 5., Table 29. and Table 32. give the description of each AC symbols.

30

Table 27., Table 30. and Table 33. give for each range the AC parameter.

Table 28., Table 31. and Table 34. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

Table 25. Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode	
Freq (MHz)	40	20	40	30	30	20	
T (ns)	25	50	25	33.3	33.3	50	

Example:

 T_{LLIV} in X2 mode for a -V part at 20 MHz (T = 1/20^{E6} = 50 ns):

x= 22 (Table 28.)

T= 50ns

 $T_{LLIV} = 2T - x = 2 \times 50 - 22 = 78$ ns

External Program Memory Characteristics

Table 26. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 27. AC Parameters for Fix	Clock
---------------------------------	-------

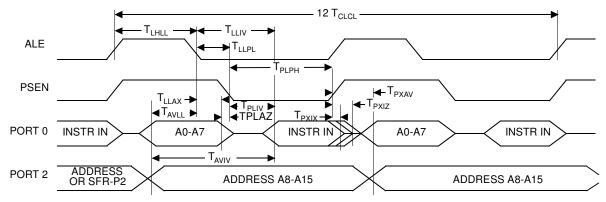

Speed	-M 40 MHz				X2 n 30 l 60 l	V node MHz MHz uiv.	stan mod	V dard le 40 Hz	20 I 40 I	L node MHz MHz uiv.	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max			
Т	25		33		25		50		33		ns		
T _{LHLL}	40		25		42		35		52		ns		
T _{AVLL}	10		4		12		5		13		ns		
T _{LLAX}	10		4		12		5		13		ns		
T _{LLIV}		70		45		78		65		98	ns		
T _{LLPL}	15		9		17		10		18		ns		
T _{PLPH}	55		35		60		50		75		ns		
T _{PLIV}		35		25		50		30		55	ns		
T _{PXIX}	0		0		0		0		0		ns		
T _{PXIZ}		18		12		20		10		18	ns		
T _{AVIV}		85		53		95		80		122	ns		
T _{PLAZ}		10		10		10		10		10	ns		

Table 28. AC Parameters for a Variable Clock: derating formula

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

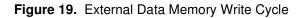
External Program Memory Read Cycle

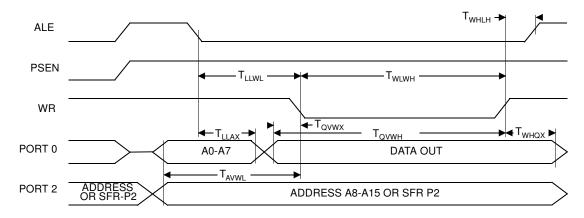
Figure 18. External Program Memory Read Cycle

External Data Memory Characteristics

Table 29. Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
Т _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high


Table 30.	AC Parameters for a Fix Clock
-----------	-------------------------------


Speed -M 40 MH		-M 40 MHz		V node MHz MHz uiv.	stan mod	V dard le 40 Hz	X2 n 20 l 40 l	L node MHz MHz uiv.	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	х	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 31. AC Parameters for a Variable Clock: Derating Formula

External Data Memory Write Cycle

External Data Memory Read Cycle

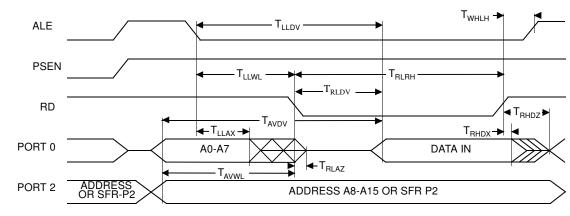
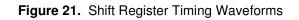
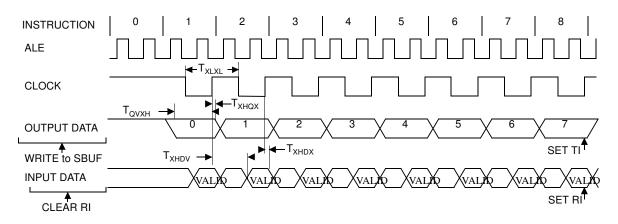


Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description


Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid


Speed	-I 40 I		- X2 n 30 l 60 l equ	node MHz MHz	stan mod	V dard le 40 Hz	20	node MHz MHz	stan	de	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

Table 34. AC Parameters for a Variable Clock: Derating Formula

Shift Register Timing Waveforms

EPROM Programming and Verification Characteristics

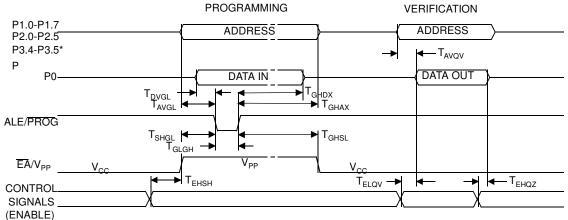

 T_A = 21°C to 27°C; V_{SS} = 0V; $~V_{CC}$ = 5V \pm 10% while programming. V_{CC} = operating range while verifying.

Table 35. EPROM Programming Parameters

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

EPROM Programming and Verification Waveforms

Figure 22. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

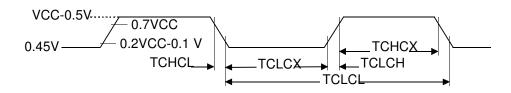
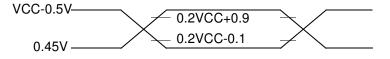

External Clock Drive Characteristics (XTAL1)

Table 36. AC Parameters

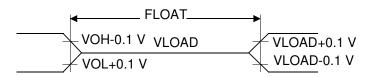
Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

External Clock Drive Waveforms


Figure 23. External Clock Drive Waveforms

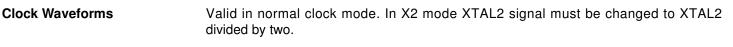
AC Testing Input/Output Waveforms

Figure 24. AC Testing Input/Output Waveforms


INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms


Figure 25. Float Waveforms


For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Ordering Information

Table 37. Possible Ordering Entries

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS80C32X2-MCA	ROMLess	5V <u>+</u> 10%	Commercial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-MCB	ROMLess	5V <u>±</u> 10%	Commercial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-MCC	ROMLess	5V <u>±</u> 10%	Commercial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-MCE	ROMLess	5V <u>+</u> 10%	Commercial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-LCA	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-LCB	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-LCC	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-LCE	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-VCA	ROMLess	5V <u>+</u> 10%	Commercial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C32X2-VCB	ROMLess	5V <u>+</u> 10%	Commercial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C32X2-VCC	ROMLess	5V <u>+</u> 10%	Commercial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C32X2-VCE	ROMLess	5V <u>+</u> 10%	Commercial	60 MHz ⁽³⁾	VQFP44	Tray
TS80C32X2-MIA	ROMLess	5V <u>+</u> 10%	Industrial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-MIB	ROMLess	5V <u>+</u> 10%	Industrial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-MIC	ROMLess	5V <u>+</u> 10%	Industrial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-MIE	ROMLess	5V <u>+</u> 10%	Industrial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-LIA	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-LIB	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-LIC	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-LIE	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-VIA	ROMLess	5V <u>+</u> 10%	Industrial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C32X2-VIB	ROMLess	5V <u>+</u> 10%	Industrial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C32X2-VIC	ROMLess	5V <u>+</u> 10%	Industrial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C32X2-VIE	ROMLess	5V <u>±</u> 10%	Industrial	60 MHz ⁽³⁾	VQFP44	Tray
AT80C32X2-3CSUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT80C32X2-SLSUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT80C32X2-RLTUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT80C32X2-RLRUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tape & Reel
AT80C32X2-SLRUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Tape & Reel
AT80C32X2-3CSUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT80C32X2-SLSUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT80C32X2-RLTUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT80C32X2-3CSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT80C32X2-SLSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT80C32X2-RLTUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray
	•	•	••	•		-
TS80C52X2zzz-MCA	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-MCB	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-MCC	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-MCE	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-LCA	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-LCB	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-LCC	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-LCE	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-VCA	8K ROM	5V <u>+</u> 10%	Commercial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C52X2zzz-VCB	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C52X2zzz-VCC	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C52X2zzz-VCE	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	VQFP44	Tray
TS80C52X2zzz-MIA	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-MIB	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-MIC	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-MIE	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-LIA	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-LIB	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-LIC	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-LIE	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-VIA	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C52X2zzz-VIB	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C52X2zzz-VIC	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C52X2zzz-VIE	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	VQFP44	Tray
	1	I	1			
AT80C52X2zzz-3CSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT80C52X2zzz-SLSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT80C52X2zzz-RLTUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT80C52X2zzz-3CSUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT80C52X2zzz-SLSUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT80C52X2zzz-RLTUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT80C52X2zzz-3CSUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT80C52X2zzz-SLSUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT80C52X2zzz-RLTUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray
TS87C52X2-MCA	8K OTP	5V ±10%	Commercial	40 MHz ⁽¹⁾	PDIL40	Stick
TS87C52X2-MCB	8K OTP	5V ±10%	Commercial	40 MHz ⁽¹⁾	PLCC44	Stick
TS87C52X2-MCC	8K OTP	5V ±10%	Commercial	40 MHz ⁽¹⁾	PQFP44	Tray
TS87C52X2-MCE	8K OTP	5V ±10%	Commercial	40 MHz ⁽¹⁾	VQFP44	Tray
TS87C52X2-LCA	8K OTP	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PDIL40	Stick
TS87C52X2-LCB	8K OTP	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PLC44	Stick
TS87C52X2-LCC	8K OTP	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PQFP44	Tray
TS87C52X2-LCE	8K OTP	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	VQFP44	Tray
TS87C52X2-VCA	8K OTP	5V ±10%	Commercial	60 MHz ⁽³⁾	PDIL40	Stick
TS87C52X2-VCB	8K OTP	5V ±10%	Commercial	60 MHz ⁽³⁾	PLCC44	Stick
TS87C52X2-VCC	8K OTP	5V ±10%	Commercial	60 MHz ⁽³⁾	PQFP44	Tray
TS87C52X2-VCE	8K OTP	5V ±10%	Commercial	60 MHz ⁽³⁾	VQFP44	Tray
TS87C52X2-MIA	8K OTP	5V ±10%	Industrial	40 MHz ⁽¹⁾	PDIL40	Stick
TS87C52X2 -MIB	8K OTP	5V ±10%	Industrial	40 MHz ⁽¹⁾	PLCC44	Stick
TS87C52X2-MIC	8K OTP	5V ±10%	Industrial	40 MHz ⁽¹⁾	PQFP44	Tray
TS87C52X2 -MIE	8K OTP	5V ±10%	Industrial	40 MHz ⁽¹⁾	VQFP44	Tray
TS87C52X2-LIA	8K OTP	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PDIL40	Stick
TS87C52X2-LIB	8K OTP	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PLCC44	Stick
TS87C52X2 -LIC	8K OTP	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PQFP44	Tray
TS87C52X2-LIE	8K OTP	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	VQFP44	Tray
TS87C52X2-VIA	8K OTP	5V ±10%	Industrial	60 MHz ⁽³⁾	PDIL40	Stick
TS87C52X2-VIB	8K OTP	5V ±10%	Industrial	60 MHz ⁽³⁾	PLCC44	Stick
TS87C52X2-VIC	8K OTP	5V ±10%	Industrial	60 MHz ⁽³⁾	PQFP44	Tray
TS87C52X2-VIE	8K OTP	5V ±10%	Industrial	60 MHz ⁽³⁾	VQFP44	Tray
AT87C52X2-3CSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT87C52X2-SLSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT87C52X2-SLSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT87C52X2-RLTUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray

Notes: 1. 20 MHz in X2 Mode.

2. Tape and Reel available for SL, PQFP and RL packages

3. 30 MHz in X2 Mode.

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, are registered trademarks, or are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.