

HPM Series

Particle Sensor

32322550

Issue E

DESCRIPTION

The Honeywell HPM Series Particle Sensor is a laser-based sensor which uses the light scattering method to detect and count particles in the concentration range of 0 $\mu g/m^3$ to 1,000 $\mu g/m^3$ in a given environment. A laser light source illuminates a particle as it is pulled through the detection chamber. As particles pass through the laser beam, the light source becomes obscured and is recorded on the photo or light detector. The light is then analyzed and converted to an electrical signal to calculate concentrations in real time. The Honeywell particle sensor provides information on the particle concentration for given particle concentration range.

VALUE TO CUSTOMERS

- Enables the ability to more accurately and cost-effectively monitor or control environmental particulate
- Industry-leading long life of 20,000 hours of continuous use essentially equates to seven years of product life (based on up to eight hours of operation per day)
- Proven EMC performance enables the ability to perform more accurately in a variety of tough industrial environments
- Ultra-fast response time of <6 s allows the HPM Series to respond to environmental conditions in real time
- Enhanced reliability allows for use in harsh environments

DIFFERENTIATION

- Industry-leading long life of 20,000 hours provides stable operation and continuous use
- Proven EMC performance, based on IEC61000 stable operation, ±15% accuracy

FEATURES

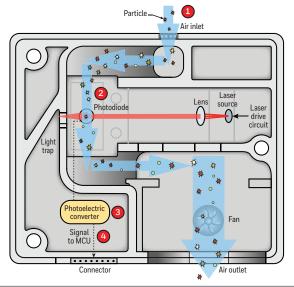
- Laser-based light scattering particle sensing
- Concentration range: 0 μg/m³ to 1,000 μg/m³
- Fully calibrated
- EMC: Heavy industrial level IEC61000
- Response time: <6 s
- Supply current: 80 mA max.
- Output signal: UART (Universal Asynchronous Receiver/ Transmitter)
- PM2.5 output (PM10 output optional)
- RoHS compliant
- REACH compliant

POTENTIAL INDUSTRIAL APPLICATIONS

- HVAC:
 - Air conditioners
 - Air quality monitors
 - Environmental monitoring
- Consumer products:
 - Air cleaners
 - Air conditioners
 - Air purifiers
 - Car air cleaners
 - Handheld air quality detectors

Particle Sensor

HPM Series

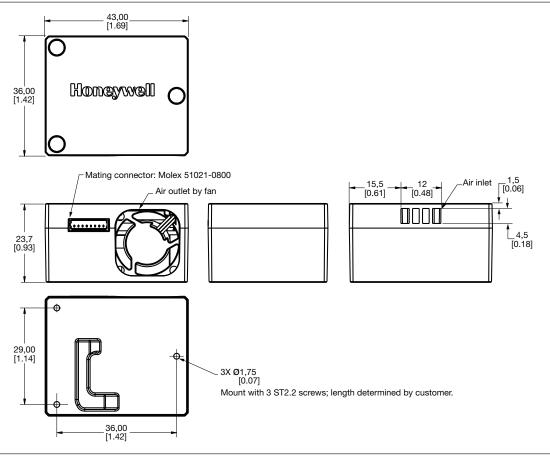

Table 1. Specifications

Characteristic	Parameter
Operating principle	laser scattering
Detection ^{1,2}	PM2.5 and PM10
Output data ^{1, 2}	PM2.5 in μg/m³ and PM10 in μg/m³
Concentration range	0 μg/m³ to 1,000 μg/m³
Accuracy (at 25° C $\pm 5^{\circ}$ C): $0 \mu\text{g/m}^3$ to $100 \mu\text{g/m}^3$ $100 \mu\text{g/m}^3$ to $1000 \mu\text{g/m}^3$	±15 μg/m³ ±15 %
Response time	<6 s
Supply voltage	5 V ±0.2 V
Standby current (at 25°C ±5°C)	<20 mA
Supply current (at 25°C ±5°C)	<80 mA
Temperature: operating storage	-10°C to 50°C [-14°F to 122°F] -30°C to 65°C [-22°F to 149°F]
Humidity (operating and storage)	0 %RH to 95 %RH non-condensing
Output protocol ³	UART; baud rate: 9600, databits: 8, stopbits: 1, parity: no
Operating time: continuous mode intermittent mode	20,000 hr depends on duty cycle
Laser class	Laser Class 1: IEC/EN 60825-1: 650 nm
ESD	±4 kV contact, ±8 kV air per IEC 61000-4-2
Radiated immunity	1 V/m (80 MHz to 1000 MHz) per IEC 61000-4-3
Fast transient burst	±0.5 kV per IEC61000-4-4
Immunity to conducted disturbances radiated emissions	3 V per IEC61000-4-6
Radiated emissions	40 dB 30 MHz to 230 MHz; 47 dB 230 MHz to 1000 MHz per CISPR 14
Conducted emissions	0.15 MHz to 30 MHz in compliance with CISPR 14

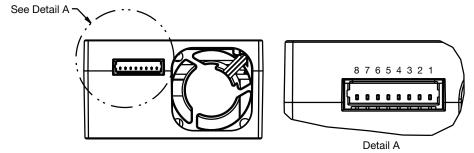
 $^{^{1}}$ PM2.5 is particulate matter \leq 2.5 μ m in diameter; PM10 is particulate matter \leq 10 μ m in diameter.

CLASS 1 LASER PRODUCT

Figure 1. HPM Series Operation (Top Down View)



- Fan draws in air through inlet.
- 2 Air passes through the laser where the light reflected off the particles is captured by the photodiode.
- The photodiode passes information to the photoelectric converter
 The photoelectric converter processes the signal from the particles into density.
- 4 Signal is transmitted to micro control unit where a proprietary algorithm processes the data and supplies outputs for the density of the particulate (μg/m³).


 $^{^2}$ PM10 in μ g/m 3 is calculated from PM 2.5 readings.

 $^{^{\}rm 3}$ Contact Honeywell for other output options.

Figure 2. Mounting Dimensions (mm/[in] For reference only.)

Table 2. Connector Pinout

Pin	Name	Description
1	+3.3 V	power output (+3.3 V/100 mA)
2	5 V	power input (5 V)
3	N/A	N/A
4	N/A	N/A
5	TEST	used for testing (NA)
6	TX	UART TX output (0 - 3.3 V)
7	RX	UART RX input (0 - 3.3 V)
8	GND	power input (ground terminal)

Product Installation

NOTICE

IMPROPER INSTALLATION

To avoid particulate settling or accumulation at the air outlet or air inlet, which may affect product sensitivity and accuracy, ensure that the HPM Series Particle Sensor:

- Is installed correctly according to Figure 2.
- Is installed such that the air inlet and air outlets are not blocked and that the flow of air through the sensor is neither restricted nor reduced.

Install the product to the desired surface using the screw size shown in Figure $1. \,$

Figure 3. Installation Orientation

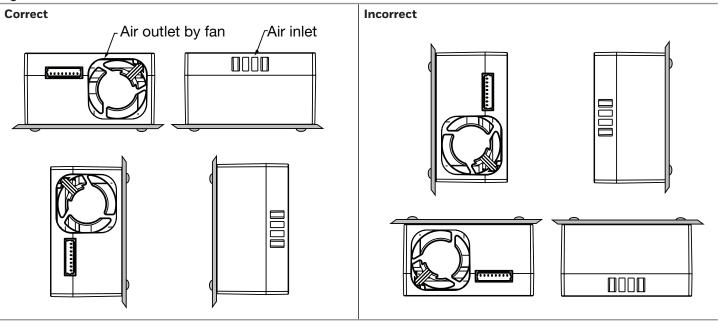


Table 3. Order Guide

Catalog Listing	Description	
HPMA115SO-XXX HPM Series PM2.5 Particle Sensor with UART output		

Particle Sensor

HPM Series

Table 4. Customer Use Protocol¹

Command Length (Bytes)	HEAD	LEN	СМД	Data	CS	Example	
Read Particle Meas	uring Re	esults	'				
Send	0x68	0x01	0x04	NA	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 01 04 93	
Response, Pos ACK	0x40	0x05	0X04	"DF1, DF2, DF3, DF4 PM2.5 = DF1 * 256 + DF2 PM10 = DF3 * 256 + DF4"	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	40 05 04 00 30 00 31 56	
Response, Neg ACK		0X9696					
Start Particle Meas	uremer	nt					
Send	0x68	0x01	0x01	NA	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 01 01 96	
Response, Pos ACK					0xA5A5		
Response, Neg ACK					0x9696		
Stop Particle Meas	uremen	t ²					
Send	0x68	0x01	0x02	NA	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 01 02 95	
Response, Pos ACK	0xA5A5						
Response, Neg ACK	0x9696						
Set Customer Adjus	stment	Coeffic	cient				
Send	0x68	0x02	0x08	DF1: 30 ~ 200 (Default, 100)	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 02 08 64 2	
Response, Pos ACK	0xA5A5						
Response, Neg ACK	0x9696						
Read Customer Adju	ustmen	t Coeff	icient				
Send	0x68	0x01	0x10	NA	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 01 10 87	
Response, Pos ACK	0X40	0X02	0X10	DF1: 30 ~ 200 (Default, 100)	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	40 02 10 64 4	
Response, Neg ACK	0x9696						
Stop Auto Send							
Send	0x68	0x01	0x20	NA	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 01 20 77	
Response, Pos ACK	0×A5A5						
Response, Neg ACK	0x9696						
Enable Auto Send³							
Send	0x68	0x01	0x40	NA	CS = MOD ((65536-(HEAD+LEN+CMD+DATA)), 256)	68 01 40 57	
Response, Pos ACK	0xA5A5						
Response, Neg ACK	0x9696						

¹Product l life may vary depending on the specific application in which the sensor is utilized.

²Shuts down the fan, helping to extend the life of the product.

³See Table 5 for data format.

Particle Sensor

HPM Series

Table 5. Data Format (Protocol Length: 32 Bytes)

Byte Number	Head0	Head0	Head0
Byte0	Head0	0x42	
Byte1	Head1	Ox4d fixed	
Byte2	Len_H		
Byte3	Len_L		Frame Length = 2x13+2(data length + checksum length)
Byte4	DataO_H		
Byte5	DataO_L		reserve
Byte6	Data1_H		D140 5
Byte7	Data1_L		PM2.5 concentration (standard particulate matter)
Byte8	Data2_H		
Byte9	Data2_L		PM10 concentration (standard particulate matter)
Byte10	Data3_H		
Byte11	Data3_L		reserve
Byte12	Data4_H		
Byte13	Data4_L		reserve
Byte14	Data5_H		
Byte15	Data5_L		reserve
Byte16	Data6_H		
Byte17	Data6_L		reserve
Byte18	Data7_H		
Byte19	Data7_L		reserve
Byte20	Data8_H		
Byte21	Data8_L		reserve
Byte22	Data9_H		
Byte23	Data9_L		reserve
Byte24	Data10_H		
Byte25	Data10_L		reserve
Byte26	Data11_H		
Byte27	Data11_L		reserve
Byte28	Data12_H		
Byte29	Data12_L		reserve
Byte30	CheckSum_H		Charley and Handfull and Huler L. D. t. O. H D. t. 12
Byte31	CheckSum_H		Checksum = HeadO+Head1+Len_H+Len_L+DataO_H++Data12_L

ADDITIONAL INFORMATION

The following associated literature is available on the Honeywell web site at sensing.honeywell.com:

- Sell sheet
- Frequently Asked Questions (FAQs)

For more information

Honeywell Sensing and Internet of Things services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit sensing.honeywell.com or call:

Asia Pacific +65 6355-2828 Europe +44 (0) 1698 481481 USA/Canada +1-800-537-6945

Honeywell Sensing and Internet of Things

9680 Old Bailes Road Fort Mill, SC 29707 www. honeywell.com

▲ WARNINGPERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

▲ WARNINGMISUSE OF DOCUMENTATION

- The information presented in this datasheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

Warranty/Remedy

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

