MORNSUN®

RoHS

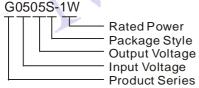
G_S-1W & H_S-1W Series

1W, FIXED INPUT, 6000V ISOLATED & UNREGULATED **DUAL/SINGLE OUTPUT DC-DC CONVERTER**

FEATURES

- Small Footprint
- SIP Package
- 6KVDC Isolation
- Low Isolation Capacitance
- Temperature Range: -40°C ~ +85°C
- No Heatsink Required
- Internal SMD Construction
- Industry Standard Pinout
- RoHS Compliance

APPLICATIONS


The G_S-1W & H_S-1W series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- 2) Where isolation is necessary between input and output (isolation voltage ≤6000VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

MODEL SELECTION

MORNSUN Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R. China.

Tel: 86-20-28203030 Fax:86-20-28203068

Http://www.mornsun-power.com

PRODUCT PROGRAM								
Dowt	Input		Output			F(('		
Part Number	Voltage (VDC)		Voltage	Current (mA)		Efficiency (%, Typ.)	Certificate	
	Nominal	Range	(VDC)	Max.	Min.	(,,,,,),,,		
H0505S-1W		4.5-5.5	5	200	20	70	UL	
H0509S-1W			9	111	12	72	UL	
H0512S-1W			12	84	9	73	UL	
H0515S-1W	5		15	67	7	74	UL	
G0505S-1W	3		±5	±100	±10	70		
G0509S-1W			±9	±56	±6	72		
G0512S-1W			±12	±42	±5	73		
G0515S-1W			±15	±33	±4	75		
H1205S-1W			5	200	20	70	UL	
H1209S-1W			9	111	12	71	UL	
H1212S-1W		10.8-13.2	12	84	9	72	UL	
H1215S-1W	12		15	67	7	74	UL	
G1205S-1W	12		±5	±100	±10	70		
G1209S-1W			±9	±56	±6	71		
G1212S-1W			±12	±42	±5	72		
G1215S-1W			±15	±33	±4	75		
H1505S-1W			5	200	20	70		
G1505S-1W	15	13.5-16.5	±5	±100	±10	70		
G1515S-1W			±15	±33	±4	73		
H2403S-1W		21.6-26.4	3.3	303	30	68		
H2405S-1W			5	200	20	71		
H2412S-1W			12	83	8	73		
H2415S-1W	24		15	67	7	75		
G2405S-1W			±5	±100	±10	71		
G2409S-1W			±9	±56	±6	72		
G2412S-1W			±12	±42	±5	72		

COMMON SPECIF	ICATIONS					
Item	Test Conditions	Min.	Тур.	Max.	Units	
Storage humidity range				95	%	
Operating temperature		-40		85	°C	
Storage temperature		-55		125		
Temp. rise at full load			15	25		
Lead temperature	1.5mm from case for 10 seconds			300		
Chart aire it protection*	5V input voltage			1	s	
Short circuit protection*	The other input voltages	Continuous				
Cooling		Free air convection		on		
Case material		Plastic(UL94-V0)				
MTBF		3500			k hours	
Weight			4.2		g	
*When input voltage (Nomi duration.	nal) is 5V, Supply voltage must be disc	ontinued	at the e	nd of sho	ort circuit	

ISOLATION SPECIFICATIONS						
Item	Test conditions	Min.	Тур.	Max.	Units	
Isolation voltage	Tested for 1 minute and 1mA max	6000			VDC	
Isolation resistance	Test at 500VDC	1000			ΜΩ	
Isolation capacitance				10	pF	

OUTPUT SPECIFICATIONS							
Item	Test conditions		Min.	Тур.	Max.	Units	
Output power		0.1		1	W		
Line regulation	For Vin change of ±1%				±1.2		
	10% to 100% lo		12.8	15			
Load regulation	10% to 100% lo		8.3	15	%		
Load regulation	10% to 100% lo		6.8	15			
	10% to 100% lo		6.3	15			
Output voltage accuracy			See tolerance envelope graph				
Temperature drift	100% full load				±0.03	%/°C	
Ripple & Noise*	20MHz Bandwidth			150	200	mVp-p	
Switching froquency	Full load,	(5V input)		250		kHz	
Switching frequency	nominal input	(The other inputs)		50		NI7Z	

*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.

Note: Dual output models unbalanced load: ±5%.

APPLICATION NOTE

1) Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load *could not be less than 10% of the full load*. If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power.

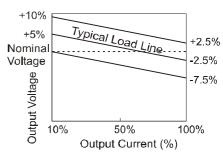
2) Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

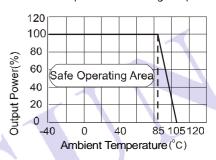
It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).

3) Output Voltage Regulation and Over-voltage Protection Circuit

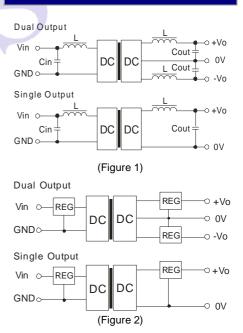
The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).


4) Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

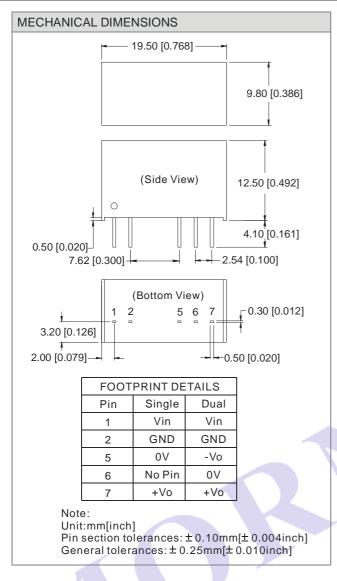

5) No parallel connection or plug and play

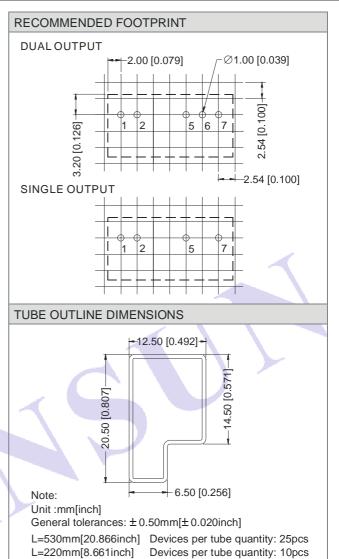
TYPICAL CHARACTERISTICS


Tolerance Envelope Graph

Temperature Derating Graph

RECOMMENDED CIRCUIT




EXTERNAL CAPACITOR TABLE (TABLE 1)

Extremit of the control of the contr							
Vin	Cin	Single	Cout	Dual	Cout		
(VDC)	(µF)	Vout	(µF)	Vout	(µF)		
		(VDC)		(VDC)			
5	4.7	5	10	±5	4.7		
12	2.2	9	4.7	±9	2.2		
15	2.2	12	2.2	±12	2.2		
24	1	15	1	±15	1		

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

OUTLINE DIMENSIONS & PIN CONNECTIONS

Note:

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed, and that will reduce the life of product.
- 2. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 3. Only typical models listed, other models may be different, please contact our technical person for more details.
- 4. In this datasheet, all the test methods of indications are based on corporate standards.