

ESDAL

Dual Transil[™] array for ESD protection

Datasheet - production data

Features

- Unidirectional device
- Low leakage current (I_R max. < 20 μA at V_{BR})
- 300 W peak pulse power (8/20 µs)

Benefits

- High ESD protection level: up to 30 kV
- High integration
- Suitable for high density boards

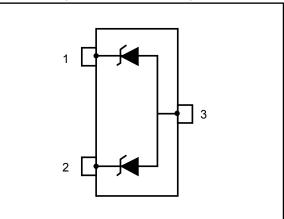
Complies with the following standards

- IEC 61000-4-2 (exceeds level 4) :
 - 30 kV (air discharge)
 - 30 kV (contact discharge)

Applications

Where transient overvoltage protection in ESD sensitive equipment is required, such as:

- Entertainment
- Signal communications
- Connectivity
- Comfort and convenience


Description

This device is a diode array designed to protect 1 line or 2 lines against ESD transients.

The device is ideal for applications where both reduced line capacitance and board space saving are required.

It can also be used as bidirectional suppressor by connecting only pin 1 and 2.

Figure 1: Functional diagram

DocID7058 Rev 5

This is information on a product in full production.

1 Characteristics

Table 1:	Absolute	maximum	ratings	(T _{amb} = 25 °C)
	Abooluto	maximam	raingo	

Symbol	Parameter	Value	Unit	
		IEC 61000-4-2:		
V _{pp}	Peak pulse voltage ⁽¹⁾	Contact discharge	30	kV
		Air discharge	30	
P _{pp}	Peak pulse power (8/20 µs)	300	W	
	Peak pulse current (8/20 μs)	ESDA5V3L	25	
		ESDA6V1L	18	
Ipp		ESDA14V2L	14	А
		ESDA25L	7	
		6.3		
Tj	Operating junction temperature range	-40 to 150	°C	
T _{stg}	Storage junction temperature range	-65 to 150	°C	
TL	Maximum lead temperature for soldering c case	260	°C	

Notes:

⁽¹⁾For a surge greater than the maximum values, the diode will fail in short-circuit.

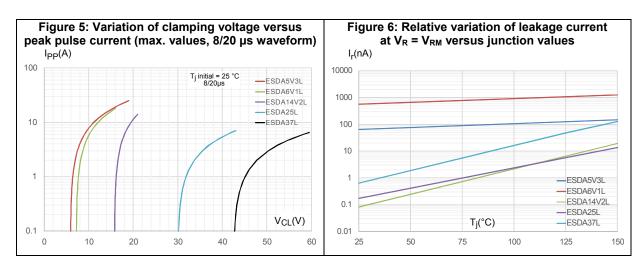
$\begin{array}{l} \text{Symbol} \\ \text{V}_{\text{BR}} & = \\ \text{V}_{\text{CL}} & = \\ \text{V}_{\text{RM}} & = \\ \text{I}_{\text{R}} & = \\ \text{I}_{\text{P}} & = \\ \text{I}_{\text{R}} & = \\ \text{V}_{\text{F}} & = \\ \text{C} & = \\ \text{R}_{\text{d}} & = \\ \alpha \text{T} & = \end{array}$	Parameter Breakdown voltage Clamping voltage Stand-off voltage Leakage current Forward current Peak pulse current Breakdown current Forward voltage drop Capacitance Dynamic impedance Voltage temperature	VBR Val ▼ VRM Slope = 1/Rd	IF VF IRM
--	---	----------------------------------	-----------------

Figure 2: Electrical characteristics (definitions)

Characteristics

Table 2: Electrical characteristics (T _{amb} = 25 °C)										
	١	/ _{BR} at I _R		IRM at VRM		I _{RM} at V _{RM} R _d ⁽¹⁾ αT		Cline	V _F a	t IF
Order code	Min.	Max.		Max.		Тур.	Max.	Typ. at 0 V bias	Max.	
	v	v	mA	μA	v	mΩ	10 ⁻⁴ /°C	pF	v	mA
ESDA5V3L	5.3	5.9	1	2	3	280	5	220	1.25	200
ESDA6V1L	6.1	7.2	1	20	5.25	350	6	140	1.25	200
ESDA14V2L	14.2	15.8	1	5	12	650	10	90	1.25	200
ESDA25L	25	30	1	1	24	1000	10	50	1.2	10
ESDA37L	37	43.3	1	1	36	2400	10	48	0.9	10


Notes:


⁽¹⁾Square pulse I_{pp} = 15 A, t_p = 2.5 µs

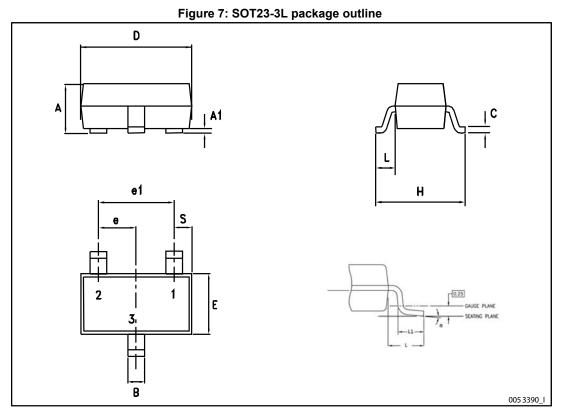
 $^{(2)}\Delta$ V_{BR} = α T x (T_{amb} -25 °C) x V_{BR} (25 °C)

1.1 Characteristics (curves)

2 Application and design guidelines

Refer to STMicroelectronics application note:

• AN2689: Protection of automotive electronics from electrical hazards, guidelines for design and component selection.

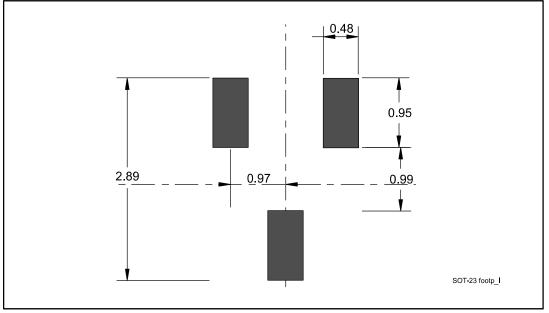


3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

- Epoxy meets UL 94,V0
- Lead-free package

3.1 SOT23-3L mechanical data



Package information

Table 3: SOT23-3L mechanical data						
Dim	mm					
Dim.	Min.	Тур.	Max.			
А	0.89		1.40			
A1	0		0.10			
В	0.30		0.51			
С	0.085		0.18			
D	2.75		3.04			
е	0.85		1.05			
e1	1.70		2.10			
E	1.20		1.75			
Н	2.10		3.00			
L		0.60				
S	0.35		0.65			
L1	0.25		0.55			
а	0°		8°			

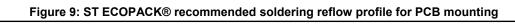
Figure 8: SOT23-3L recommended footprint

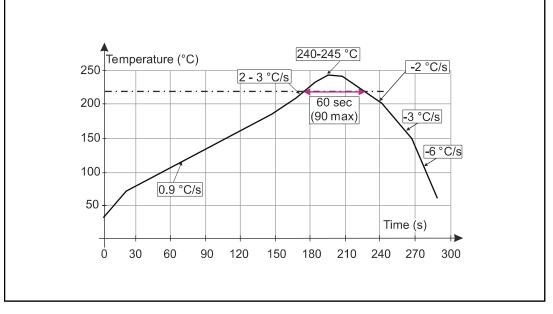
Dimensions are in mm.

4 Recommendation on PCB assembly

4.1 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: powder particle size 20-45 $\mu m.$


4.2 Placement


- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ± 0.05 mm is recommended.
- 4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

4.3 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

4.4 Reflow profile

8

Minimize air convection currents in the reflow oven to avoid component movement.

5 Ordering information

Figure 10: Ordering information scheme

	ESDA XXX L
ESD Array	
Minimum breakdown voltage	
Package	

Table 3: Ordering information

Order code	Marking ⁽¹⁾	Package	Weight	Base qty.	Delivery mode
ESDA5V3L	EL53				
ESDA6V1L	EL61		0.7 m.m		
ESDA14V2L	EL15	SOT23-3L	8.7 mg	3000	Tape and reel
ESDA25L	EL25				
ESDA37L	EL37		9.8 mg		

Notes:

 $^{(1)}\mbox{The}$ marking can be rotated by multiples of 90° to differentiate assembly location.

6 Revision history

Table 4: Document revision history

Date	Revision	Changes	
31-Jul-2012	4	First issue.	
20-Jul-2017	5	Added ESDA37L package information.	

ESDAL

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

