Page: 30

CUSTOMER APPROVAL SHEET

C	ompany Name	(請註明客戶別)
	MODEL	
	CUSTOMER	Title :
	APPROVED	Name :
	APPROVAL FOR SPECIFICAT	ΓΙΟΝS ONLY (Spec. Ver)
	APPROVAL FOR SPECIFICAT	FIONS AND ES SAMPLE (Spec. Ver)
	APPROVAL FOR SPECIFICAT	FIONS AND CS SAMPLE (Spec. Ver)
	CUSTOMER REMARK :	

Doc. version: 0.6

Total pages: 30

Date: 2014/1/08

Product Specification

4.97" COLOR AMOLED MODULE

MODEL NAME: PA7201280A

- < ◆ >Preliminary Specification
- < >Final Specification

0.6

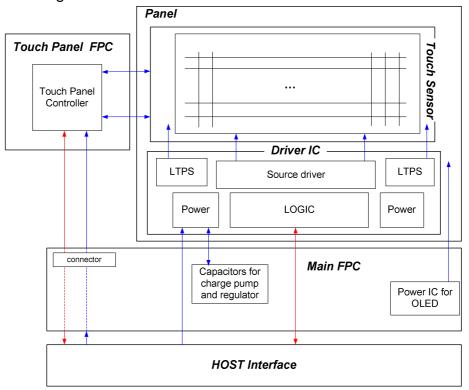
Page: 2/30

Record of Revision

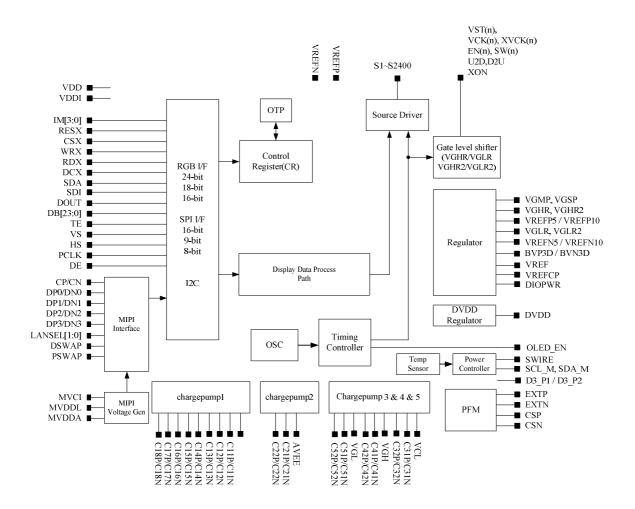
Version	Revise Date	Page	Content
0.0	Aug. 23, 2013		First Draft
0.1	Aug. 28, 2013		Add EE setting
0.2	Oct. 16, 2013		Spec. modified.
0.3	Nov. 6, 2013	15,16,18, 21	Change the Power on sequence and Power off sequence.
0.4	Nov. 28, 2013	18 ~ 21	Change Initial code.
0.5	Dec. 13, 2013	18 ~ 21 29~30,	Add VESA standard / Change power consumption & initial code/ Module drawing
0.6	Jan. 08, 2014	6	Revised pin 27 MIPI DSI data3+, pin 28 MIPI DSI data3-

Contents

A.	Ge	neral Specification	4
	1.	Physical Specifications	4
	2.	Module Block Diagram	4
	3.	Driver IC Block Diagram	5
В.	Ele	ectrical Specifications	6
	1.	Main FPC Pin assignment — AMOLED Panel Input/Output Signal Interface	6
	2.	Absolute maximum ratings	7
C.	Ele	ectrical Characteristics	8
	1.	Typical Operating Conditions	8
	2.	Display Current Consumption	8
	3.	Touch Panel Current Consumption	g
D.	AC	Characteristics	10
	1.	MIPI Interface Characteristics	10
	2.	Display RESET Timing Characteristics	12
	3.	Touch Panel I2C Timing Characteristics	13
	4.	Touch Panel RESET Timing Characteristics	14
E.	Re	commended Operating Sequence	15
	1.	State Diagram	15
	2.	Display Power on / off Sequence	15
	3.	Touch Panel Power on Sequence	17
F.	Dis	splay and Touch Initial code	18
	1.	Display Timing and Initial code and	18
	2.	Touch Panel IIC address	19
G.	Spe	ecifications	22
Н.	Rel	liability Test Items	27
I.	Pac	cking	28
J.	Ou	ıtline Demension (Tentative)	29


Page: 4/30

A. General Specification


1. Physical Specifications

Item	Description	Single LCM	Remark
1	Screen Size (inch)	4.97"	
2	Driving Method	DC	
3	Display Mode	OLED	
4	Display Resolution (dot)	720xRGBx1280	
5	Active Area (mm)	61.92 (H)×110.08(V)	
6	Pixel Configuration	Real R.G.B	
7	Display Color	16.7M	
8	Driver IC	.PI69052(RM69052)	
9	Interface	MIPI DSI	
10	Touch IC	S3402	Synaptics
11	Outline Dimension (mm)	65.92 (H) × 118.64(V) × 1.00(T)	AMOLED w/ on-cell touch function

2. Module Block Diagram

3. Driver IC Block Diagram

0.6

Page: 6/30

B. Electrical Specifications

Main FPC Pin assignment — AMOLED Panel Input/Output Signal Interface

Recommended connector: FH26-39S-0.3SHW (Hirose)

#	Pin_name	I/O	Description
1	GND	Power	Ground
2	VBAT	Power	
3	VBAT	Power	
4	VBAT	Power	
5	VBAT	Power	
6	VBAT	Power	
7	GND	Power	Ground
8	GND	Power	Ground
9	GND	Power	Ground
10	NC	NC	
11	TE	0	Vsync(vertical sync)signal output from panel to avoid tearing effect
12	RESX	1	This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.
13	VDDI	Power	Driver IC digital I/O supply
14	GND	Power	Ground
15	D2P	I	MIPI DSI data2+
16	D2N	I	MIPI DSI data2-
17	GND	Power	Ground
18	D1P	I	MIPI DSI data1+
19	D1N	I	MIPI DSI data1-
20	GND	Power	Ground
21	CKP	I	MIPI DSI clock+
22	CKN	I	MIPI DSI clock-
23	GND	Power	Ground
24	D0P	I/O	MIPI DSI data0+
25	D0N	I/O	MIPI DSI data0-
26	GND	Power	Ground
27	D3P	1	MIPI DSI data3+
28	D3N	l	MIPI DSI data3-
29	GND	Power	Ground
30	VCI	Power	Driver IC analog supply
31	GND	Power	Ground
32	TP_VCC	Power	Touch panel analog supply (connect to touch FPC pin6)
33	TP_VDDI	Power	Touch Panel I/O voltage supply (connect to touch FPC pin7)
34	TP_INT	0	Touch panel interrupt output (connect to touch FPC pin8)
35	TP_SDA	I/O	Touch panel I2C data (connect to touch FPC pin10)
36	TP_SCL	I/O	Touch panel I2C clock (connect to touch FPC pin9)
37	TP_RESX	0	Touch panel reset (connect to touch FPC pin11)
38	TP_A4	I/O	Touch panel reserved GPIO (connect to touch FPC pin12)
39	GND	Power	Ground

0.6

Page: 7/30

2. Absolute maximum ratings

Item	Symbol	Min.	Max.	Unit	Remark
Power IC Power supply	VBAT	-	+4.5	V	
Digital Power supply	VDDI	-0.3	+2.0	٧	
Analog Power supply	VCI	-0.3	+4.0	V	
Touch analog power supply	TP_VCC	-0.3	+4.0	٧	
Touch digital power supply	TP_VDDI	-0.3	+2.0	٧	

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operates with the absolute maximum ratings for a long time, the reliability may drop.

0.6

8/30

Page:

C. Electrical Characteristics

1. Typical Operating Conditions

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Panel Power supply		VBAT	2.9	3.7	4.5	\	
Digital Power supply		VDDI	1.65	1.8	1.95	٧	
Analog Power supply		VCI	2.7	3.1	3.6	٧	
Touch analog power supply		TP_VCC	2.7	3.1	3.6	٧	
Touch digital power supply		TP_VDDI	1.65	1.8	1.95	٧	
Input Signal Voltage	H Level	V _{IH}	0.8*VDDI	-	VDDI	٧	RESX
Input Signal Voltage	L Level	V _{IL}	0	-	0.2*VDDI	٧	NESA
Output Signal Valtage	H Level	V _{OH}	0.7*VDDI	-	VDDI	٧	TE
Output Signal Voltage	L Level	V _{OL}	0	-	0.3*VDDI	V	

Note 1: The operation is guaranteed under the recommended operating conditions only. The operation is not guaranteed if a quick voltage change occurs during the operation. To prevent the noise, a bypass capacitor must be inserted into the line closed to the power pin.

2. Display Current Consumption

Mode	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	I _{BAT}		-	470	580	mA	Note1
Normal	I _{VCI}	V _{BAT} = 3.7V VCI = 3.1V VDDI = 1.8V	-	60	80	mA	Note2
	I _{VDDI}		-	1	10	mA	Note2
Doon Standby	I _{OVDD/OVSS}		-	<1	-	mA	Note3
Deep Standby (DSTB=1)	I _{VCI}		1	<1	ı	mA	Note3
(0310=1)	I _{VDDI}		-	<1	-	μΑ	Note3

Note 1: VBAT input 2.9V, I_{BAT} maximum current enhance to 740mA.

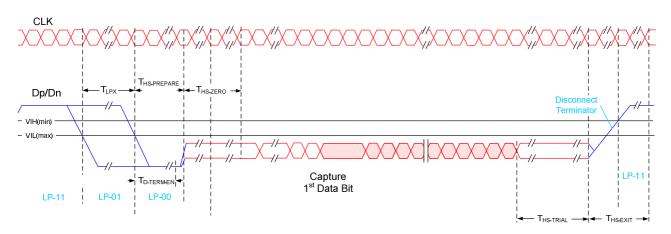
Note 2: Testing in white pattern. MIPI-DSI frame rate 60Hz viedo mode.

Note 3: Display off. RESX = high

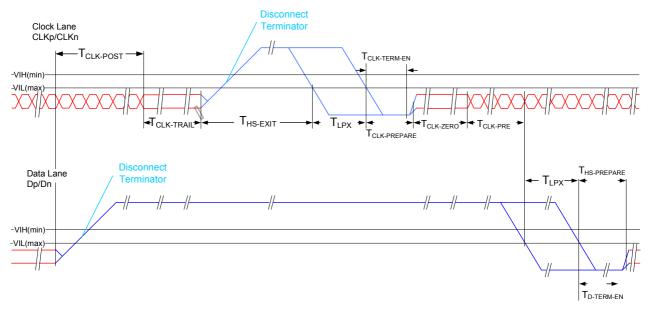
0.6

Page: 9/30

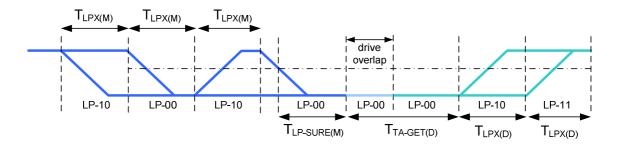
Touch Panel Current Consumption 3.


Mode	Symbol	Condition	Тур.	Unit	Remark
	I _{TP_VDDI}	TD \/DDI	13	mA	
(Active – 1finger)	I _{TP_VCC}	TP_VDDI = 1.8V TP_VCC=3.1V	12.5	mA	
	I _{TP_VDDI}	Touch controller configured	18.5	mA	
(Active – 10fingers)	I _{TP_VCC}	at 100 Hz report rate and	12.5	mA	
Normal Operation	I _{TP_VDDI}	= 30 ms doze interval (24Rx x = 14Tx)	0.4	mA	
Normal Operation	I _{TP_VCC}		0.35	mA	
Sensor Sleep	I _{TP_VDDI}	ITP_VDDI not include VBUS	9	μΑ	
(Deep sleep)	I _{TP_VCC}	1	8	μΑ	

Page: 10/30


D. AC Characteristics

MIPI Interface Characteristics

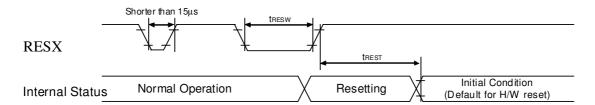

HS Data Transmission Burst

HS clock transmission

Turnaround Procedure

0.6

Page: 11/30


Touries that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the period from the end of Theorems. The Interval is defined as the Policy is defined a	Symbol	Description	Min	Тур	Max	Unit
HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of Thistranl to the beginning of Toliktranl. Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst. Thistranl Time that the transmitter drives LP-11 and following a HS burst. Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIII.MAX. Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transmitter drives mode. Tolktrenen Time that the HS obstate prior to starting the Clock. Tolktrenen Time for the Data Lane receiver to enable the HS in the HS-0 state prior to starting from the time point when Dn crosses VIII.MAX. The PREPARE Time that the transmitter drives the HS-0 the HS-0 the HS-0 the HS line termination, starting from the time point when Dn crosses VIII.MAX. The PREPARE Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission The PREPARE This time that the transmitter drives the HS-0 time state starting the HS transmission The PREPARE This time that the transmitter drives the HS-0 time state starting the HS transmission. The PREPARE This time that the transmitter drives the flipped differential state after last payload data bit of the HS-0 time that the transmitter drives the flipped differential state after last payload data bit of the HS-0 time that the transmitter drives the flipped differential state after last payload data bit of the HS-0 time that the transmitter drives the flipped differential state after last payload data bit of the HS-0 time that the transmitter drives the flipped differential state after last payload data bit of the HS-0 time that the transmitter drives the flipped differential state after last payload data bit of the HS-0 time that the transmitter drives the flipped differential state after last payload data				- 71		
defined as the period from the end of This Trank to the beginning of Touk-Trank. Touk-Trank. Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst. This transmission burst. This that the transmitter drives LP-11 following a HS burst. Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses Villiams. Touk-Prepare This that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. Touk-Prepare This for the Data Lane receiver to enable the HS-0 state prior to starting from the time point when Dn crosses Villiams. This prepare This that the transmitter drives the HS line termination, starting from the time point when Dn crosses Villiams. This prepare This that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 tine state starting the HS transmission This prepare This prepare time that the transmitter drives the Data Lane LP-00 Line state starting the HS transmission This prepare This prepare time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 state prior to transmitting the Sync sequence. This prepare This prepare time that the transmitter drives the flipped differential state after last payload data bit of	OLIVI GOT					
Trable to the beginning of Tolk-Trable. Tolk-Trable Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst. This exit after the last payload clock bit of a HS transmission burst. Time that the transmitter drives LP-11 following a HS burst. Tolk-Tremien Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{II.MAX} . Tolk-Pree Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. Tolk-Prepare + Tolk-Zero Tolk-Prepare + HS-0 state prior to starting the Clock. Tolter He HS line termination, starting from the time point when Dn crosses V _{II.MAX} . This-Prepare Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{II.MAX} . This-Prepare Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{II.MAX} . This-Prepare Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission This-Prepare + T		has transitioned to LP Mode. Interval is				
Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst. THS-EXIT Time that the transmitter drives LP-11 following a HS burst. TGUK-TERM-EN Time for the Clock Lane receiver to enable the HS line termination, starting from the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. TGUK-PREARE + TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting from the time point when Dn crosses V _{IL MAX} . THIS-PREPARE TIME for the Data Lane receiver to enable the HS-0 Line state immediately before the HS-0 Line state starting the HS transmitter drives the HS-0 Line state prior to transmitting the Sync sequence. THIS-PREPARE + TIME that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. THIS-PREPARE + THIS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. THIS-PREPARE + THIS-PREPARE + time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state immediately before the HS-0 state prior to transmitting the Sync sequence. THIS-PREPARE THIS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. THIS-PREPARE TIME that the transmitter drives the flipped differential state after last payload data bit of		defined as the period from the end of T_{HS}				
state after the last payload clock bit of a HS transmission burst. The state after the last payload clock bit of a HS transmission burst. Time that the transmitter drives LP-11 following a HS burst. Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. Time that the HS-0 state prior to starting the Clock. Totick-PREPARE the HS-0 state prior to starting the Clock. Totick-PREPARE the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . The for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . The prepare time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission The prepare the HS-0 state prior to transmitting the Sync sequence. The transmiter time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. The transmiter time that the transmitter drives the flipped differential state after last payload data bit of		TRAIL to the beginning of T _{CLK-TRAIL} .				
Tolk-prepare the HS-0 state prior to starting the Clock. Tolk-prepare the HS line termination, starting from the transmitter drives be the HS-0 state prior to starting the HS-0 Line state immediately before the HS-0 state prior to transmitting from the time point when Dn crosses V _{IL-MAX} . Tolk-prepare Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. Tolk-prepare Tolk-prepare the HS-0 state prior to starting the Clock. TolterMeen Time for the Data Lane receiver to enable the HS-0 state prior to starting the Clock. The prepare Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission The prepare The prepare time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. The This prepare The prepare time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. The This prepare Time that the transmitter drives the flipped differential state after last payload data bit of	T _{CLK-TRAIL}	Time that the transmitter drives the HS-0	60			ns
Time that the transmitter drives LP-11 following a HS burst. TCLK-TERM-EN Import the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VILMAX. TCLK-PRE Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. TCLK-PREPARE + TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting from the time point when Dn crosses VILMAX. THS-PREPARE Time that the transmitter drives the HS-0 Line state immediately before the HS-0 Line state starting the HS transmission THS-PREPARE THS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. THS-TRAIL Time that the transmitter drives the flipped differential state after last payload data bit of		state after the last payload clock bit of a HS				
following a HS burst. Tourished Part of the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses Villmax. Tourished Part of the Data Lane receiver to enable the HS-0 Line state immediately before the HS-0 Line state starting the HS transmitter drives the HS-0 state prior to transmitter drives the HS-0 Line state prior to transmitter drives the HS-0 Line state prior to transmitter drives the HS-0 Line state prior to transmitter drives the HS-0 state prior to transmitter drives the HS-0 Line State prior to transmitting the Sync sequence. This-Trail Time that the transmitter drives the flipped differential state after last payload data bit of		transmission burst.				
Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . Tolk-PRE Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. Tolk-PREPARE + Tolk-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock. Tolterm-EN Time for Dn to the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . This-PREPARE Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission This-PREPARE + This-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. This-Trail Time that the transmitter drives the flipped differential state after last payload data bit of	T _{HS-EXIT}	Time that the transmitter drives LP-11	300			ns
the HS line termination, starting from the time point when Dn crosses V _{ILMAX} . T _{CLK-PRE} Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. T _{CLK-PREPARE} Time to the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{ILMAX} . T _{HS-PREPARE} Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T _{HS-PREPARE} T _{HS-TRAIL} Time that the transmitter drives the flipped differential state after last payload data bit of		following a HS burst.				
TCLK-PRE Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. TCLK-PREPARE + TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock. TD-TERM-EN Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{ILMAX} . THS-PREPARE Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission THS-PREPARE THS-PREPARE THS-PREPARE THS-PREPARE + THS-PREPARE + THS-O state prior to transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission THS-PREPARE THS-PREPARE THS-PREPARE + THS-PREPARE + THS-O state prior to transmitter drives sequence. THS-TRAIL Time that the transmitter drives the flipped differential state after last payload data bit of	T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable	Time for Dn to		38	ns
TCLK-PRE Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. TCLK-PREPARE + TCLK-ZERO TD-TERM-EN Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VILMAX. THS-PREPARE THS-TRAIL Time that the transmitter drives the flipped differential state after last payload data bit of		the HS line termination, starting from the	reach V _{TERM}			
transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. T_CLK-PREPARE + T_CLK-ZERO T_CLK-PREPARE + TOLK-ZERO Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T_HS-PREPARE + T_HS-ZERO Time that the transmitter drives the flipped differential state after last payload data bit of		time point when Dn crosses V _{IL,MAX} .	EN			
transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. T_CLK-PREPARE + T_CLK-ZERO T_CLK-PREPARE + TOLK-ZERO Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T_HS-PREPARE + T_HS-ZERO Time that the transmitter drives the flipped differential state after last payload data bit of						
transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. T_CLK-PREPARE + T_CLK-ZERO T_CLK-PREPARE + TOLK-ZERO Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T_HS-PREPARE + T_HS-ZERO Time that the transmitter drives the flipped differential state after last payload data bit of						
transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. T_CLK-PREPARE + T_CLK-ZERO T_CLK-PREPARE + TOLK-ZERO Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T_HS-PREPARE + T_HS-ZERO Time that the transmitter drives the flipped differential state after last payload data bit of						
transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. T_CLK-PREPARE + T_CLK-ZERO T_CLK-PREPARE + TOLK-ZERO Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T_HS-PREPARE + T_HS-ZERO Time that the transmitter drives the flipped differential state after last payload data bit of						
Lane beginning the transition from LP to HS mode. TCLK-PREPARE TCLK-PREPARE + time that the transmitter drives 300 ns the HS-0 state prior to starting the Clock. TIme for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . EN THS-PREPARE Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission THS-PREPARE THS-PREPARE + time that the transmitter drives 145ns + 10*Ul ns ns the HS-0 state prior to transmitting the Sync sequence. THS-TRAIL Time that the transmitter drives the flipped 60ns + 4*Ul ns ns differential state after last payload data bit of 145	T _{CLK-PRE}		8			UI
TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock. TD-TERM-EN Time for the Data Lane receiver to enable time point when Dn crosses V _{IL.MAX} . Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission THS-PREPARE THS-REPARE THS-REPARE THS-REPARE THS-REPARE THS-REPARE THS-REPARE TIme that the transmitter drives the Sync sequence. THS-TRAIL Time that the transmitter drives the flipped differential state after last payload data bit of						
T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock. T _{D-TERM-EN} Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL.MAX} . T _{HS-PREPARE} Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission T _{HS-PREPARE} + T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. T _{HS-TRAIL} Time that the transmitter drives the flipped differential state after last payload data bit of						
the HS-0 state prior to starting the Clock. To-term-en Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . Theorem that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission Theorem Theorem the transmitter drives the Data Lane LP-00 Line state starting the HS transmission Theorem Theorem the HS-0 state prior to transmitter drives the HS-0 state prior to transmitting the Sync sequence. Theorem Theorem the HS-0 state prior to transmitter drives the flipped differential state after last payload data bit of	-		000			
Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . This-prepare The HS-0 Line state immediately before the HS-0 Line state starting the HS transmission This-prepare + The-prepare the HS-0 state prior to transmitting the Sync sequence. This-transmission This-prepare the HS-0 state prior to transmitting the Sync sequence. This-transmission This-prepare the HS-0 state prior to transmitting the Sync sequence. This-transmission This-transmission This-prepare the HS-0 state prior to transmitting the Sync sequence. The that the transmitter drives the flipped differential state after last payload data bit of	-		300			ns
the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . This-Prepare Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission This-Prepare This-Prepare + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. This-Trail Time that the transmitter drives the flipped differential state after last payload data bit of			Time (a. D. I.		05	
time point when Dn crosses V _{IL,MAX} . The that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission The HS-PREPARE time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. The HS-TRAIL Time that the transmitter drives the flipped differential state after last payload data bit of	I D-TERM-EN				35 NS +4"UI	
The that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission The HS-PREPARE The Hime that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. The HS-Trail Time that the transmitter drives the flipped differential state after last payload data bit of						
Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission Ths-prepare + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. Ths-trall Time that the transmitter drives the flipped differential state after last payload data bit of	T				85 nc + 6*111	ne
the HS-0 Line state starting the HS transmission Ths-Prepare + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. Ths-Trail Time that the transmitter drives the flipped differential state after last payload data bit of	I HS-PREPARE		40115 + 4 01		05 115 + 0 01	115
transmission T _{HS-PREPARE} T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. T _{HS-TRAIL} Time that the transmitter drives the flipped differential state after last payload data bit of		•				
T _{HS-PREPARE} T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. T _{HS-TRAIL} Time that the transmitter drives the flipped differential state after last payload data bit of						
+ T _{HS-ZERO} the HS-0 state prior to transmitting the Sync sequence. T _{HS-TRAIL} Time that the transmitter drives the flipped differential state after last payload data bit of	Tue ppenade		145ns + 10*UI			ns
sequence. This-trail Time that the transmitter drives the flipped differential state after last payload data bit of ns						
The that the transmitter drives the flipped differential state after last payload data bit of ns	110-ZENO					
differential state after last payload data bit of	T _{HS-TRAII}		60ns + 4*UI			ns
T _{LPX(M)} Transmitted length of any Low-Power state 50 150 ns	T _{LPX(M)}		50		150	ns

Page: 12/30

	period of MCU to display module			
T _{TA-SURE(M)}	Time that the display module waits after the	T _{LPX(M)}	2*T _{LPX(M)}	ns
	LP-10 state before transmitting the Bridge			
	state (LP-00) during a Link Turnaround.			
$T_{LPX(D)}$	Transmitted length of any Low-Power state	50	150	ns
	period of display module to MCU			
$T_{TA\text{-}GET(D)}$	Time that the display module drives the	5*T _{LPX(D)}		ns
	Bridge state (LP-00) after accepting control			
	during a Link Turnaround.			
$T_{TA\text{-}GO(D)}$	Time that the display module drives the	4*T _{LPX(D)}		ns
	Bridge state (LP-00) before releasing control			
	during a Link Turnaround.			
T _{TA-SURE(D)}	Time that the MPU waits after the LP-10	$T_{LPX(D)}$	2*T _{LPX(D)}	ns
	state before transmitting the Bridge state			
	(LP-00) during a Link Turnaround.			

2. Display RESET Timing Characteristics

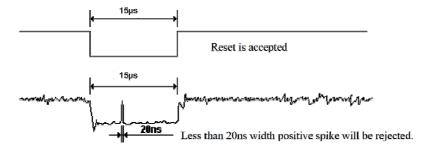
Reset input timing

IOVCC=1.65 to 3.6V, VCI=2.5 to 3.6V, AGND=DGND=0V, Ta=-40 to 85° C

Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESX	15	-	-	-	μs
t _{REST}		-	-	-	5	When reset applied during Sleep in mode	ms
	*2) Reset complete time	-		-	120	When reset applied during Sleep out mode	ms

Note 1. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

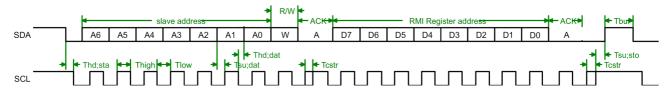
RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 15μs	Reset
Between 5µs and	Reset starts
15µs	(It depends on voltage and temperature condition.)


Note 2. During the resetting period, the display will be blanked (The display is entering blanking

Page: 13/30

sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset.

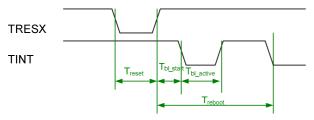
Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.


Note 4. Spike Rejection also applies during a valid reset pulse as shown below:

Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

Touch Panel I2C Timing Characteristics

I2C timing

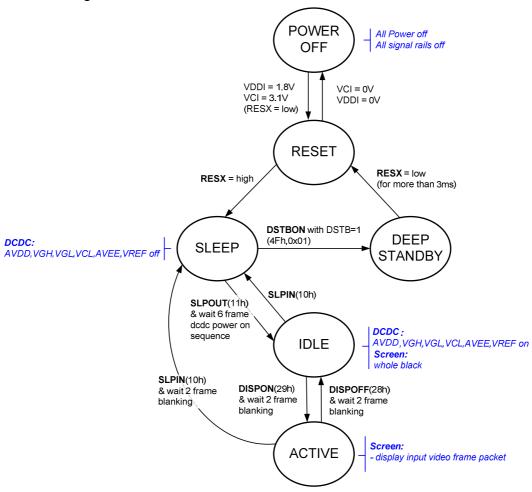

Symbol	Parameter	Standard-	Mode Host	Fast-Mo	de Host	Unit
Cy201	i didilioto:	Min.	Max.	Min.	Max.	J
fSCL	SCL clock frequency	-	100	-	400	kHz
tCSTR	Stretch time	-	25	-	25	μs
tHD;STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μs
tLOW	LOW period of the SCL clock	4.7	-	1.3	-	μs
tHIGH	HIGH period of the SCL clock	4.0	-	0.6	-	μs
tSU;STA	Set-up time for a repeated START condition	4.7	-	0.6	-	μs
tHD;DAT	Data hold time	0	3.45	0	0.9	μs
tHD;DAT O	Data out hold time	-	0	-	0	μs
tSU;DAT	Data set-up time	250	-	100	-	ns
tr	Rise time of both SDA and SCL signals	-	1000	20 + 0.1 Cb	300	ns
tf	Fall time of both SDA and SCL signals	-	3000	20 + 0.1 Cb	300	ns
tSU:STO	Set-up time for STOP condition	4.0	-	0.6	-	μs

Page: 14/30

tBUF	Bus free time between a STOP and START condition	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
VnL	Noise margin at the LOW level for each connected device (including hysteresis)	0.1 VBUS		0.1 VBUS		٧
VnH	Noise margin at the HIGH level for each connected device (including hysteresis)	0.2 VBUS	-	0.2 VBUS	-	V

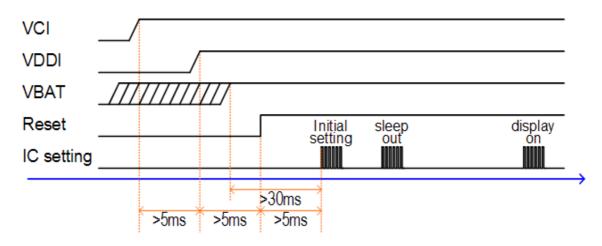
Touch Panel RESET Timing Characteristics 4.

Reset input timing


Symbol	Min.	Max.	Unit
T _{reset} (TRESX pin)	100	-	ns
T_{bl_start}	-	2	ms
T _{bl_active}	-	11	ms
T_{reboot}	-	16	ms

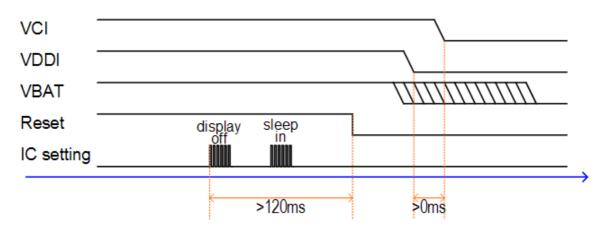
Page: 15/30

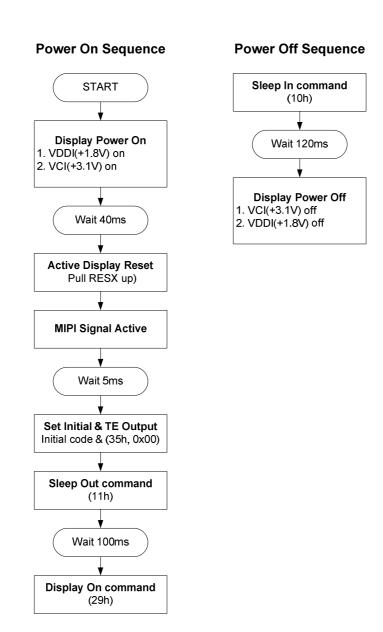
0.6


E. Recommended Operating Sequence

1. State Diagram

2. Display Power on / off Sequence

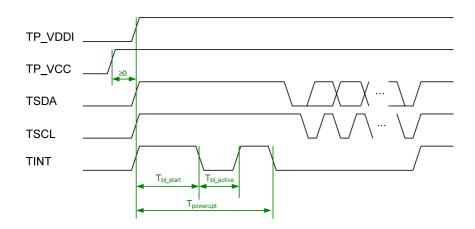

Power On Sequence:



Page: 16/30

0.6

Power Off Sequence:



Page: 17/30

0.6

Touch Panel Power on Sequence 3.

Symbol	Min.	Max.	Unit
T _{powerup}	-	60	ms
T _{bl_start} (bootloader start)	-	46	ms
T _{bl active} (bootloader active)	-	11	ms

0.6

Page: 18/30

F. Display and Touch Initial code

Display Initial code

Item	Parameter qt'y	address	P0	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
1	5	F0	55	AA	52	08	00						
2	3	B0	00	10	10								
3	1	BA	60										
4	7	BB	77	77	77	77	77	77	77				
5	5	F0	55	AA	52	08	02						
6	1	CA	04										
7	1	E1	00										
8	1	E2	0A										
9	1	E3	40										
10	4	E7	00	00	00	00							
11	8	ED	48	00	E0	13	08	00	91	08			
12	6	FD	00	08	1C	00	00	01					
13	11	C3	11	24	04	0A	02	04	00	1C	10	F0	00
14	5	F0	55	AA	52	08	03						
15	1	E0	00										
16	6	F1	00	00	00	00	00	01					
17	1	F6	80										
18	5	F0	55	AA	52	08	05						
19	2	C4	00	14									
20	1	C9	04										
21	5	F0	55	AA	52	08	01						
22	3	B0	06	06	06								
23	3	B1	14	14	14								
24	3	B2	00	00	00								
25	3	B4	66	66	66								
26	3	B5	44	44	44								
27	3	B6	54	54	54								
28	3	B7	24	24	24								
29	3	B9	04	04	04								
30	3	BA	14	14	14								
31	3	BE	22	38	78								
32	1	35	00										

Page: 19/30

0.6

1. Touch Panel IIC address

Reading Manufacturer ID:

IIC address (7 bits) = 0x20

Although a host would not normally need to read the Manufacturer ID register provided by the RMI4 interface, reading this register is a good first step in verifying that the host and

Touch Controller are communicating:

The Manufacturer ID register belongs to the group of Function \$01 query registers. The addresses of these registers vary between different Synaptics RMI4-over-I2C Touch Controllers.

The Manufacturer ID register always returns data \$01. Figure A gives an example of the resulting bus transaction, in the format typically used to describe I2C transactions. The symbol meanings are listed in Table A. The shaded areas indicate bus activity by the Touch Controller. In this example, assume the slave address of the device is \$20, with the Manufacturer ID register at \$E1.

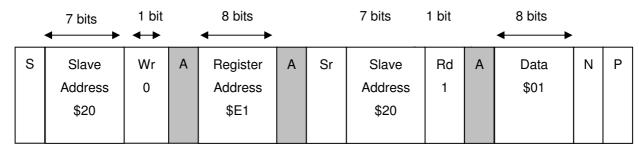


Figure A. Read Manufacturer ID command

Tabel A.

Symbol	Meaning
S	I2C bus Start condition. This is a falling edge on SDA while SCL is high.
Sr	Repeated Start condition. Same as S. Note that hosts that cannot generate Repeated
	Starts may use a Stop condition (P) followed by a another Start (S) instead.
Р	I2C Stop condition. This is a rising edge on SDA while SCL is high.
Α	I2C acknowledge (ACK). The data receiver pulls SDA low during a high pulse on SCL
	driven by the transmitter.
N	I2C not acknowledge (NACK). The data receiver lets SDA remain high during a high pulse
	on SCL driven by the transmitter.
Wr	'Write' bit. This has a value of 0.
Rd	'Read' bit. This has a value of 1.

Using register:

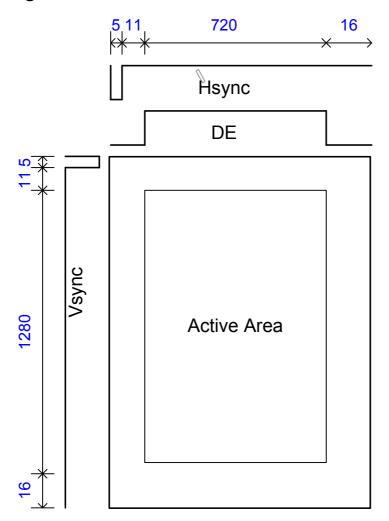
A. Page Select

Addr	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Access
0x00FF	Page Select		Page							W
Description	on	Set	Page 0=	=0x00						

Page: 20/30

B. Communicating:

Address=0x0006 is used to read coordinate. It must continue to read 10 fingers data every time


	0x00 Registers	D::-	Dira	D::-	D:: 4	Dire	Dire	D:: 1	Dire		
Addr	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Access	
	F12_2D_DATA01(00)/00										
	Object Type and)bject	. Туре	e and	Statı	1S		RW	
	Status 0										
	F12_2D_DATA01(00)/01				Х	LSB				RW	
	Object Data 0										
	F12_2D_DATA01(00)/02				ΧI	MSB				RW	
	Object Data 0										
	F12_2D_DATA01(00)/03		Y LSB								
0x0006	Object Data 0										
	F12_2D_DATA01(00)/04				Y 1	MSB				RW	
	Object Data 0										
	F12_2D_DATA01(00)/05					Z				RW	
	Object Data 0										
	F12_2D_DATA01(00)/06	W×								RW	
	Object Data 0										
	F12_2D_DATA01(00)/07	Wy								RW	
	Object Data 0	Obje	- t T	C		-10 05	N D-4-	1 (NI) (O)			
		-			•	·12_2L)_Data	1(N)/0)			
)0 = NC)1 = Fir	object	•						
			01 = 11 02 = Sty	Ū							
)2 = Si)3 = Pa								
				iiiii iclassif	iod						
				eservec							
				oved F							
Description	on			sition da	•	SB)					
Doodinpar	011		•		•	•	st-siani	ficant	hits of		
			_		•		_				
		the absolute X and Y position data. X and Y position data (LSB)									
				This register contains the least-significant bits for							
			_				-				
		both the X and Y absolute position information.									
			field re	eports	the an	nount (of finae	er cont	act or		
		This field reports the amount of finger contact or finger signal strength, which often serves as a									

Page: 21/30

rough estimate of finger pressure. When Z=0, the position cannot be measured and the X and Y Position registers are left unchanged. By default Z is taken as 0 whenever the device's built-in algorithms determine that no finger is present. Wx, Wy

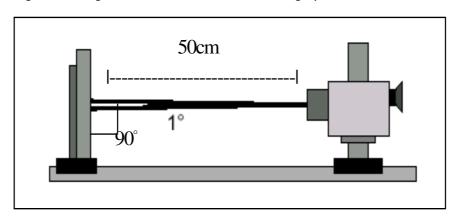
These fields report the estimated finger width as an unsigned integer, where 0 represents an extremely narrow finger and 15 represents an extremely wide contact such as a palm laid flat on the sensor. The ratio of Wx and Wy provides an estimate of the finger contact aspect ratio.

Display Timing:

0.6

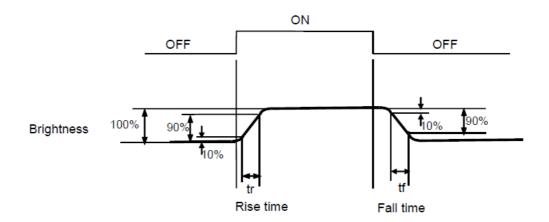
Page: 22/30

3 Specifications


					1		
Ite	m	Abbr.	Min.	Тур.	Max.	Unit	Remark
Optical Cha	rostoriotio	Brightness	225	250	275	nits	
Optical Characteristic LCM (w/ Cover Lens)		Wx	0.28	0.30	0.32		Note 3
LCIVI (W/ CC	over Lens)	Wy	0.29	0.31	0.33		
Contras	st ratio	@25deg	10000				Note 5
		Тор	80°			deg	
Viewing	angle	Bottom	80°			deg	Note 7
CR>1	600	Left	80°			deg	Note /
		Right	80°			deg	
Brightness	Uniformity	250nits	70%				Note 6
Optical Swite	ching Time	+25°B/W(Tr+Tf)/2			1	ms	Note 4
	Red	CIE1931 x	0.645	0.675	0.705	Red	
	Red	CIE1931 y	0.295	0.325	0.355	Red	
Color	Green	CIE1931 x	0.186	0.236	0.286	Green	Note 8
Color	Green	CIE1931 y	0.661	0.711	0.761	Green	Note o
	Blue	CIE1931 x	0.090	0.130	0.170	Blue	
	Blue	CIE1931 y	0.025	0.065	0.105	Blue	
NTS	SC	CIE x , y	80	100		%	
		θ=30°CIE x	-0.05		0.015		
Angular White	Color Shifting	θ=30°CIE y	-0.05		0.03		
Angulai Wille	Color Stilling	θ=60°CIE x	-0.08		0.035		
		θ=60°CIE y	-0.07		0.04		
Life time T50		25C°		50K		hrs	Note 10
Flick	ker				-30	db	Note 9
Crosstalk 250nits		Vertical			5.0	%	Note 11
Gam	ma	γ	2.0	2.2	2.4		

Page: 23/30

Note 1: Ambient temperature = 25° C ± 2° C.


Note 2: To be measured in the dark room.

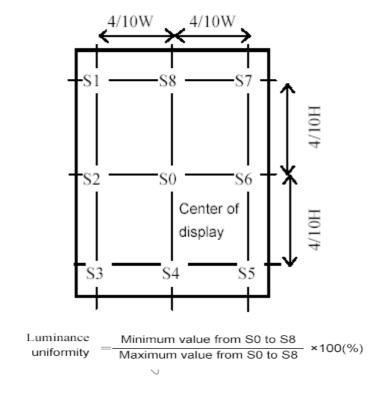
Note 3: The brightness measurement shall be done at the center of the display with a full white image. The brightness shall meet the following spec, at 100% check.

Note 4: Optical Switching Time:

The optical switching time measurements should be performed at driven BLACK and driven WHITE at typ. brightness setting by the driving techniques specified. The luminance should be measured with the emitting display and the detector at θ =0°and ψ =90°. The rise time tr is the time between a 10% optically response of the display and a 90% optically response of the display. The fall time tf is the time between a 10% optically response of the display and a 90% optically response to the display. The response time is defined as the average of the rise time and the fall time.

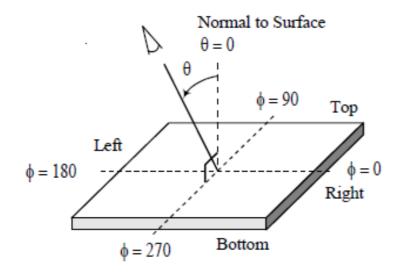
Page: 24/30

Note 5: Definition of contrast ratio:


Contrast ratio is calculated with the following formula:

Contrast ratio (CR)=

Photo detector output when OLED is at "White"


Photo detector output when OLED is at "Black

Note 6: Uniformity. Refer to figure as below

Note 7: Definition of viewing angle:

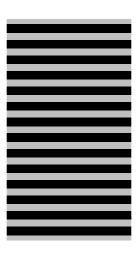
The optical performance is specified as the driver IC located at =270°

Page: 25/30

0.6

Note 8: The color chromaticity should be based on sample performance because new OLED material should be verified later.

Note 9: Flicker


The flicker level is defined using Fast Fourier Transformation (FTT) as follows:

Flic ker =
$$20 \log_{10} \left(2 \frac{f_{FFTC}(n)}{f_{FFTC}(0)} \right) + FS(Hz)$$
 (dB)

where fFTC(n) is the nth FFT coefficient, and fFFTC(0) is the 0th FFT coefficient which is DC component. FS(Hz) is the flicker sensitivity as a function of frequency.

The flicker level shall be measured with the test pattern in below.

The gray leves of test pattern is 128.

Note 10: Time to 50% Luminance (100 cd/m2)

To measure the burn-in effect, a test pattern with white background applied to the AMOLED display at 30% loading

- .Life Time(250 cd/m2) 10Khrs(Min)
- .Life Time(170 cd/m2) 20Khrs(Typ)
- .Life Time(140 cd/m2) 30Khrs(Typ)
- .Life Time(125 cd/m2) 40Khrs(Typ)
- .Life Time(100 cd/m2) 50Khrs(Typ)

Page: 26/30

Note 11: Cross-talk

$$CrossTalk_Black = \begin{cases} 1 - \left(\frac{b2}{a2} \div \frac{b1}{a1}\right) \times 100\%, 1 - \left(\frac{b2}{c2} \div \frac{b1}{c1}\right) \times 100\%, \\ 1 - \left(\frac{d2}{a2} \div \frac{d1}{c1}\right) \times 100\%, 1 - \left(\frac{d2}{f2} \div \frac{d1}{f1}\right) \times 100\%, \\ 1 - \left(\frac{e2}{c2} \div \frac{e1}{c1}\right) \times 100\%, 1 - \left(\frac{e2}{b2} \div \frac{e1}{b1}\right) \times 100\%, \\ 1 - \left(\frac{g2}{f2} \div \frac{g1}{f1}\right) \times 100\%, 1 - \left(\frac{g2}{h2} \div \frac{g1}{h1}\right) \times 100\%, \\ 1 - \left(\frac{b3}{a3} \div \frac{b1}{a1}\right) \times 100\%, 1 - \left(\frac{b3}{c3} \div \frac{b1}{c1}\right) \times 100\%, \\ 1 - \left(\frac{d3}{a3} \div \frac{d1}{a1}\right) \times 100\%, 1 - \left(\frac{d3}{f3} \div \frac{d1}{f1}\right) \times 100\%, \\ 1 - \left(\frac{e3}{c3} \div \frac{e1}{c1}\right) \times 100\%, 1 - \left(\frac{e3}{h3} \div \frac{e1}{h1}\right) \times 100\%, \end{cases}$$

CrossTalk = MAX{CrossTalk White, CrossTalk Black}

 $1 - \left(\frac{g3}{f3} \div \frac{g1}{f1}\right) \times 100\%, 1 - \left(\frac{g3}{h3} \div \frac{g1}{h1}\right) \times 100\%$

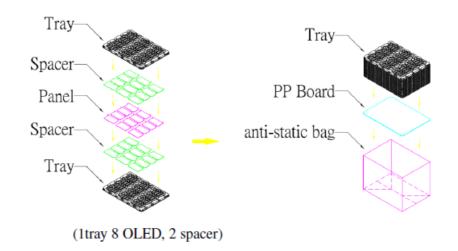
0.6

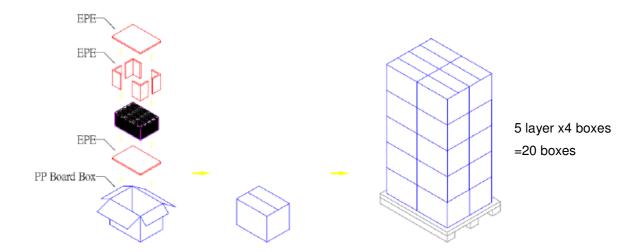
Page: 27/30

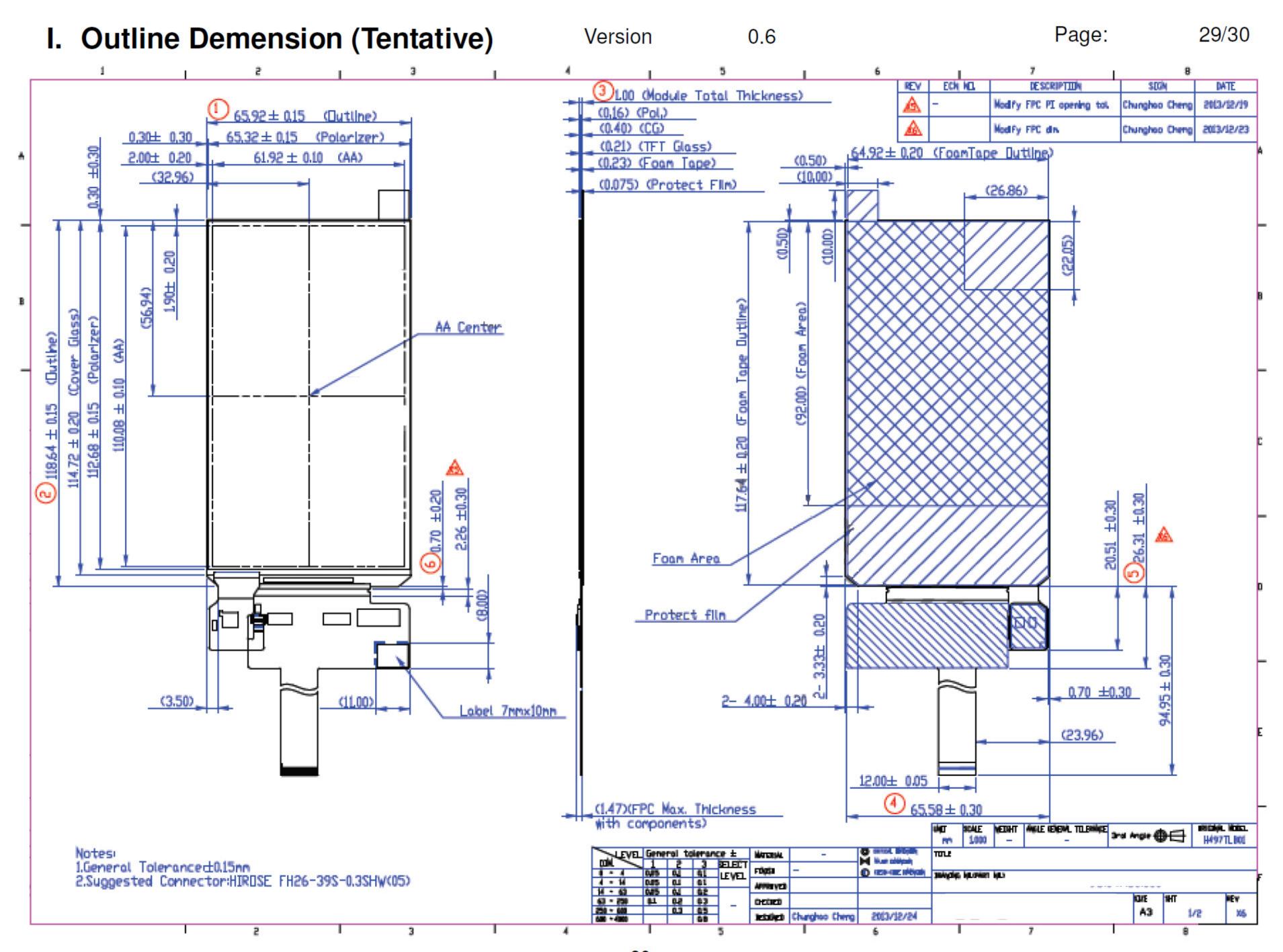
G. Reliability Test Items

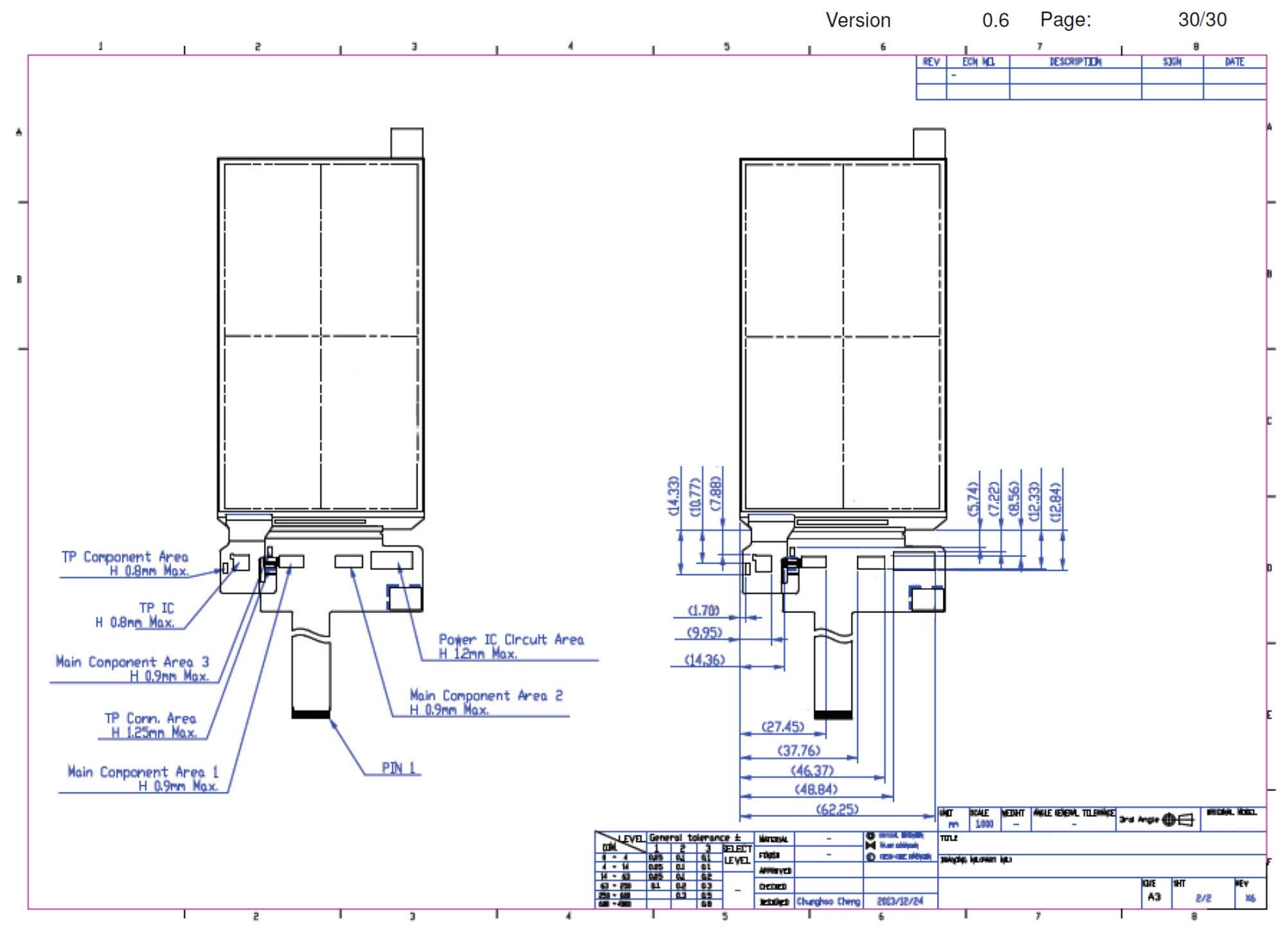
Category	No.	Test items	Conditions	Remark
	1	High Temp. Operation	Ta= 80°C 168hrs	Ta: Ambient temperature.
	2	High Temp. Storage	Ta= 80 °C 168hrs	Non-operation
	3	Low Temp. Operation	Ta= -40°C 168hrs	
Reliability	4	Low Temp. Storage	Ta= -40°C 168hrs	Non-operation
(Environment)	5	High Temp./Humi. Operation	Ta= 40°C. 95% RH 168hrs	
	6	Thermal Shock	-40 °C ~80 °C, Dwell for 30 min.30 cycles	Non-operation
	7	Low Pressure Storage	Condition: 40,000 ft, room temperature, 48hrs. Criterion: Normal performance after recovery time.	Non-operation
	8	Shock Test	Half Sine, 400G, duration time 2 ms, One shock for each surfaces,total 6 shocks	Non-operation
	9	Random Vibration Test	0.025G2/Hz, 10~500Hz Nominal 3.5Grms in each axis, 30 minutes each axis	Non-operation
Reliability (Mechanical)	10	Sinusoidal Vibration Test	0.5 octave / minutes sweep rate One sweep, 10 to 500Hz, all 3 axes (X, Y Z) Fixture used: Fasten the specimen to the vibration table Power is OFF	Non-operation
	11	FPC Bending	Connector side: Bending FPC with 180° both clockwise and counterclockwise OLED side: Bending FPC with 180° both clockwise and counterclockwise minimum 30 cycles for every side.	Non-operation
	12	FPC connection insert/ Remove	Insert/Remove LCM FPC for 15 cycles.	
		IEC 61000-4-2	The contract of the contract o	
	13	Air Discharge ±8KV	There is no degradation of OLED performance after this test. (LCM level)	
ESD		Contact Discharge ±4KV	periormane and the test (25m level)	
202		IEC 61000-4-2	There is no OLED damage after this test.	
	14	Air Discharge ±15KV	(System level)	
		Contact Discharge ±8KV		
Grounding	15	Metal frame grounding	The resistance between FPC ground pir and metal frame should be less than 1 Ohm before/after all reliability test	

Page: 28/30


0.6


H. Packing


紙箱尺寸:546mm x 406mm x 278mm


棧板尺寸:1150mmx840mmx132mm

1set for 20 tray (8pcs) +1 tray(空) =160pcs module

