Specification for Approval

PRODUCT NAME: PRODUCT NO.:

	CUSTOMER	
	APPROVED BY	
DATE:		
DATE.		

- 1 -

RE\	REVISION RECORD								
REV.	REVISION DESCRIPTION	REV. DATE	REMARK						
X01	INITIAL RELEASE	2008.04.30							
X02	 Modify polarizer Add the IC specifications Add the lifetime specifications Add the panel electrical specifications Add the application circuit 	2008. 06. 20	Page 4~8, 11~14 & 16						
X03	Modify polarizer	2008. 09. 18	Page 4, 5, 8 & 16						
A01	 Transfer from X version Add the information of module weight Modify driving voltage (14.5V→15V) Add the packing specification 	2008. 11. 10	Page 5, 6, 7, 8 & 17						
A02	Modify packing specification	2008. 12. 10	Page 17						
A03	 Modify polarizer Modify definition of panel thickness 	2009. 07. 27	Page 4, 5, 6, 8 & 16						
A04	■ Modify seal color (white→black)	2009. 12. 31	Page 16						

CONTENTS

ITEM	PAGE
1. SCOPE	4
2. WARRANTY	4
3. FEATURES	4
4. MECHANICAL DATA	5
5. MAXIMUM RATINGS	6
6. ELECTRICAL CHARACTERISTICS	7
6.1 D.C ELECTRICAL CHARACTERISTICS	
6.2 ELECTRO-OPTICAL CHARACTERISTICS	
7. INTERFACE	9
7.1 FUNCTION BLOCK DIAGRAM	
7.2 PANEL LAYOUT DIAGRAM	
7.3 PIN ASSIGNMENTS	
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP	
7.5 INTERFACE TIMING CHART	
8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT	13
8.1 POWER ON / OFF SEQUENCE	
8.2 APPLICATION CIRCUIT	
8.3 COMMAND TABLE	
9. RELIABILITY TEST CONDITIONS	15
10. EXTERNAL DIMENSION	16
11. PACKING SPECIFICATION	17
12. APPENDIXES	18

<u>1. SCOPE</u>

The purpose of this specification is to define the general provisions and quality requirements that apply to the supply of display cells manufactured by P&S . This document,together with the Module Ass'y Drawing, is the highest-level specification for this product. It describes the product, identifies supporting documents and contains specifications.

2. WARRANTY

P&S warrants that the products delivered pursuant to this specification (or order) will conform to the agreed specifications for twelve (12) months from the Shipping date ("Warranty Period"). P&S is obligated to repair or replace the products which are found to be defective or inconsistent with the specifications during the Warranty Period without charge, on condition that the products are stored or used as the conditions specified in the specifications. Nevertheless, P&S is not obligated to repair or replace the products without charge if the defects or inconsistency are caused by the force majeure or the reckless behaviors of the customer.

After the Warranty Period, all repairs or replacements of the products are subject to charge.

3. FEATURES

- Small molecular organic light emitting diode.
- Color : 262K color and 65K colors
- Panel matrix : 128*96
- Driver IC : SSD1351UR1
- Excellent quick response time.
- Extremely thin thickness for best mechanism design : 1.21mm
- High contrast : 2000:1
- Wide viewing angle : 160°
- 8/16/18 bits 6800-series parallel interface, 8/16/18 bits 8080-series parallel interface, Serial Peripheral Interface.
- Wide range of operating temperature : -40 to 70 °C
- Anti-glare polarizer.

4. MECHANICAL DATA

NO	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128 (W) x 96 (H)	dot
2	Dot Size	0.0435 (W) x 0.1855 (H)	mm ²
3	Dot Pitch	0.0685 (W) x 0.2055 (H)	mm ²
4	Aperture Rate	57	%
5	Active Area	26.279 (W) x 19.708 (H)	mm ²
6	Panel Size	33 (W) x 25.8 (H)	mm ²
7*	Panel Thickness	1.02 ± 0.1	mm
8	Module Size	33 (W) x 39.8 (H) x 1.21 (D)	mm ³
9	Diagonal A/A size	1.29	inch
10	Module Weight	2.28 ± 10%	gram

* Panel thickness includes substrate glass, cover glass and UV glue thickness.

5. MAXIMUM RATINGS

ITEM	MIN	MAX	UNIT	Condition	Remark
Supply Voltage (V _{CI})	-0.3	4	V	Ta = 25°C	IC maximum rating
Supply Voltage (Vcc)	8	21	V	Ta = 25°C	IC maximum rating
Operating Temp.	-40	70	°C		
Storage Temp	-40	85	°C		
Humidity	-	85	%		
Life Time	11,000	-	Hrs	90 cd/m ² , 50%	Note (1)
	11,000	-	1115	checkerboard	
Life Time	12,000	_	Hrs	80 cd/m², 50%	Note (2)
	12,000	-	1115	checkerboard	NOLE (2)

Note:

(A) Under Vcc = 15V, Ta = 25°C, 50% RH.

(B) Life time is defined the amount of time when the luminance has decayed

to less than 50% of the initial measured luminance.

(1) Setting of 90 cd/m^2 :

- Master contrast setting : 0x07
- Frame rate : 105Hz
- Duty setting : 1/96

(2) Setting of 80 cd/m^2 :

- Master contrast setting : 0x06
- Frame rate : 105Hz
- Duty setting : 1/96

6. ELECTRICAL CHARACTERISTICS

6.1 D.C ELECTRICAL CHARACTERISTICS

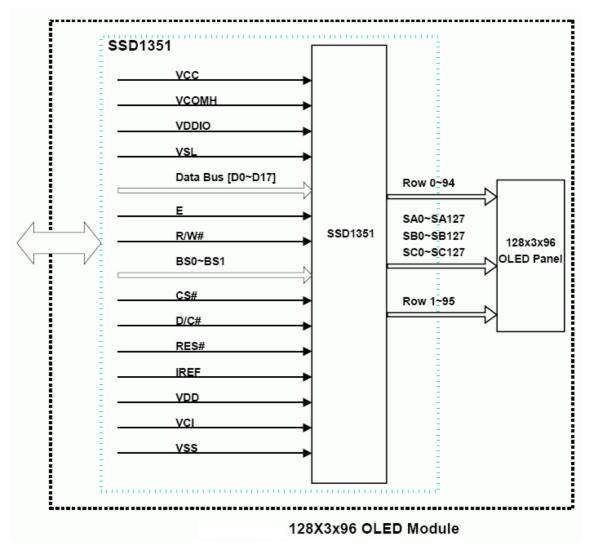
SYMBOL	PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
Vcc	Analog power supply (for OLED panel)		14.5	15	15.5	V
V _{CI}	Digital power supply		2.4	2.7	3.5	V
V _{DDIO}	I/O voltage power supply		1.65	1.8	Vcı	V
IDD	$V_{CI} = V_{DDIO} = 3.3V,$ $V_{CC} = 18V,$ External $V_{DD} = 2.5V,$ Display ON, No panel attached, contrast = FF			170	190	uA
I _{DDIO}	$V_{CC} = 18$, Display ON,	External V _{DD} = 2.5V		0.5	10	uA
טוטטי	No panel attached, contrast = FF	Internal V_{DD}		0.5	10	
I _{CI}	$\label{eq:VCI} \begin{array}{l} V_{CI} = V_{DDIO} =, \ 3.3V, \\ V_{CC} = 18, \ Display \ ON, \end{array}$	External V _{DD} = 2.5V	-	60	70	uA
'CI	No panel attached, contrast = FF	External V _{DD} = 2.5V		260	290	
lcc	$\label{eq:VCI} \begin{array}{l} V_{CI} = V_{DDIO} =, \ 3.3V, \\ V_{CC} = 18, \ Display \ ON, \end{array}$		-	1.25	1.4	mA
ICC	No panel attached, contrast = FF	External V _{DD} = 2.5V		1.25	1.4	
V _{IH}	Hi logic input level		0.8* V _{DDIO}	-	V _{DDIO}	V
V_{IL}	Low logic input level		0	-	0.2* V _{DDIO}	V
V _{OH}	Hi logic output level		0.9* V _{DDIO}	-	V _{DDIO}	V
V _{OL}	Low logic output level		0	-	0.1* V _{DDIO}	V
	Segment Output Current	Contrast=FF	-	200	-	uA
I _{SEG}	Setting	Contrast=7F	-	100	-	uA
	V _{CC} = 18V at IREF = 12.5uA	Contrast=3F	-	50	-	uA

6.2 ELECTRO-OPTICAL CHARACTERISTICS

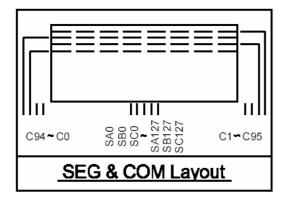
ANEL LEECTRICAL 3			I		1
PARAMETER	MIN	TYP.	MAX	UNITS	COMMENTS
Normal mode current		20	22	mA	All pixels on (1)
Standby mode		3	5	mA	Standby mode
current		5	5	шл	10% pixels on (2)
Normal mode power		300	330	mW	All pixels on (1)
consumption		500	550	1110 0	
Standby mode power		45	75	mW	Standby mode
consumption		40	75		10% pixels on (2)
Normal Luminance	70	90		cd/m ²	Display Average
Standby Luminance		40		cd/m ²	Display Average
CIEx (White)	0.24	0.28	0.32		x, y (CIE 1931)
CIEy (White)	0.28	0.32	0.36		x, y (CIE 1931)
CIEx (Red)	0.62	0.66	0.70		
CIEy (Red)	0.29	0.33	0.37		
CIEx (Green)	0.26	0.30	0.34		
CIEy (Green)	0.59	0.63	0.67		
CIEx (Blue)	0.10	0.14	0.18		
CIEy (Blue)	0.14	0.18	0.22		
Dark Room Contrast	2000:1				
Viewing Angle	160			degree	
Response Time		10		μs	
			•		•

PANEL ELECTRICAL SPECIFICATIONS

(1) Normal mode condition :


- Driving Voltage : 15V
- Contrast setting : 0x07
- Frame rate : 105Hz
- Duty setting : 1/96

(2) Standby mode condition :


- Driving Voltage : 15V
- Contrast setting : 0x04
- Frame rate : 105Hz
- Duty setting : 1/96

7. INTERFACE

7.1 FUNCTION BLOCK DIAGRAM

7.2 PANEL LAYOUT DIAGRAM

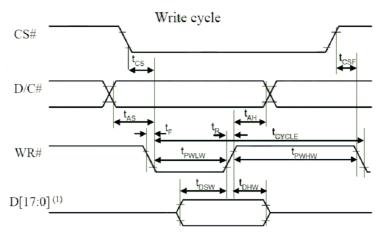
7.3 PIN ASSIGNMENTS

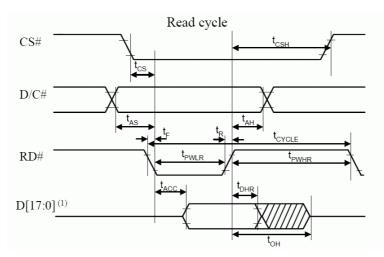
PIN NAME	PIN NO	DESCRIPTION					
NC	1	No connection.					
VCC	2	Power supply for panel driving voltage.					
VCOMH	3	COM signal deselected voltage level. A capacitor should be connected between this pin an VSS.					
VDDIO	4	Power supply for interface logic level.					
VSL	5	This is segment voltage reference pin.					
D17	6						
D16	7						
D15	8						
D14	9						
D13	10						
D12	11						
D11	12						
D10	13						
D9	14	These pins are bi-directional data bus connecting to the					
D8	15	MCU data bus.					
D716D617D518D419							
D3	20						
D2	21						
D1	22						
D0	23						
E	24	8080: data read enable pin; 6800:Read/Write enable pin.					
R/W#	25	8080: data write enable pin; 6800:Read/Write select pin.					
BS0	26	Interface select pin.					
BS1	27	Interface select pin.					
NC	28	No connection.					
CS#	29	Chip select pin.					
D/C#	30	H: Data, L: Command.					
RES#	31	Hardware Reset pin (Low active).					
IREF	32	A resistor should be connected between this pin and VSS.					
VDD	33	Power supply pin for core logic operation.					
NC	34	No connection.					
NC	35	No connection.					
VCI	36	Digital voltage power supply.					
NC	37	No connection.					
VSS	38	Ground.					
NC	39	No connection.					

7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 128 x 128 x 18bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown below.

-					-									
Segment	Normal		0			1		2	 	126		127		
Address	Remapped		127			126		125	 	1		0		
C	olor	Α	В	C	A	В	С	Α		C	A	В	C	
	Data	A5	B5	C5	A5	B5	C5	A5	 	C5	A5	B5	C5	
I V I	format	A4	B4	C4	A4	B4	C4	A4	 	C4	A4	B4	C4	
		A3	B3	C3	A3	B3	C3	A3	 	C3	A3	B3	C3	
Common		A2	B2	C2	A2	B2	C2	A2	 	C2	A2	B2	C2	
Address		A1	B1	C1	A1	B1	C1	A1	 	C1	A1	B1	C1	
	\sim	A0	B0	C0	A0	B0	C0	A0	 	C0	A0	B0	C0	Common
Normal	Remapped													output
0	127	6	6	6	6	6	6	6	 	6	6	6	6	COM0
1	126	6	6	6	6	6	6	6	 	6	6	6	6	COM1
2	125	6	6	6	6	6	6	6	 	6	6	6	6	COM2
3	124	б	Ý	б	б	б	б	6	 	6	б	б	б	COM3
4	123	6	6	6	6	6	6	6	 	6	6	6	6	COM4
5	122	6	6	6	6	6	6	6	 	6	6	6	6	COM5
6	121	6	6	no of bi	ts in this	cell	6	6	 	6	6	6	6	COM6
7	120								 	6	6	6	6	COM7
:	:		:	:	:	:	:	:	 	:	:	:	:	:
:	:		:	:	:	:	:	:	 	:	:		:	:
:	:		:	:	:	:	:	:	 	:	:	:	:	:
123	4	6	6	6	6	6	6	6	 	6	6	6	6	:
124	3	6	6	6	6	6	6	6	 	6	6	6	6	COM124
125	2	6	6	6	6	6	6	6	 	6	6	6	6	COM125
126	1	6	6	6	6	6	6	6	 	6	6	6	6	COM126
127	0	6	6	6	6	6	6	6	 	6	6	6	6	COM127
SEG	output	SA0	SB0	SC0	SA1	SB1	SC1	SA2	 	SC126	SA127	SB127	SC127	


7.5 INTERFACE TIMING CHART


8080-Series MCU Parallel Interface Timing Characteristics

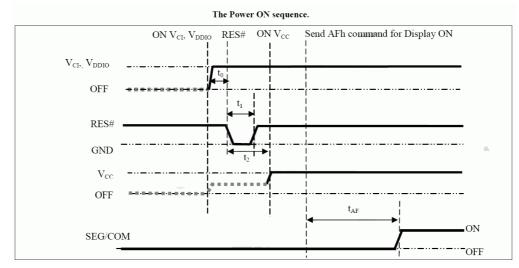
Symbol	Parameter	Min	Тур	Max	Unit
t _{CYCLE}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
t _{PWLR}	Read Low Time	150	-	-	ns
tPWLW	Write Low Time	60	-	-	ns
t _{PWHR}	Read High Time	60	-	-	ns
t _{PWHW}	Write High Time	60	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns
t _{cs}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns

$(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.65 \text{V}, V_{CI} = 2.8 \text{V}, T_A = 25^{\circ}\text{C})$

8080-series MCU parallel interface characteristics

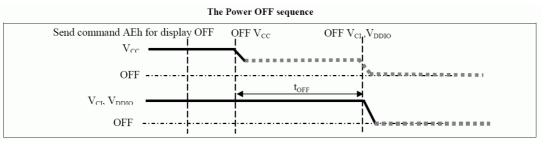
Note

(1) when 8 bit used: D[7:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead.


8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT

8.1 POWER ON / OFF SEQUENCE

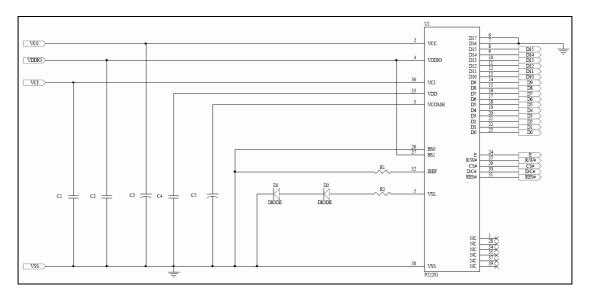
The following figures illustrate the recommended power ON and power OFF sequence of SSD1351 (assume V_{CI} and V_{DDIO} are at the same voltage level and internal V_{DD} is used).


Power ON sequence:

- 1. Power ON Vcl, VDDIO.
- 2. After V_{CI}, V_{DDIO} become stable, set wait time at least 1ms (t₀) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 2us $(t_1)^{(4)}$ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 2us (t2). Then Power ON Vcc.⁽¹⁾
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after $200ms(t_{AF})$.

Power OFF sequence:

- 1. Send command AEh for display OFF. 2. Power OFF V_{CC} .^{(1), (2)}
- 3. Wait for t_{OFF}. Power OFF V_{CI}, V_{DDIO}.(where Minimum t_{OFF}=80ms ⁽³⁾, Typical t_{OFF}=100ms)


Note:

- (1) Since an ESD protection circuit is connected between Vci, VDDIO and Vcc, Vcc becomes lower than Vciwhenever Vci, Vbbio is ON and Vcc is OFF as shown in the dotted line of Vcc in above figures.
- (2) Vcc should be kept float (disable) when it is OFF.
- (3) VCI, VDDIO should not be Power OFF before Vcc Power OFF.
- (4) The register values are reset after t1.
- (5) Power pins (VDD, VCC) can never be pulled to ground under any circumstance.

- 13 -

REV.: A04 2009/12/31

8.2 APPLICATION CIRCUIT

Recommend components:

C1, C2, C4: 1uF/16V(0805)

C3, C5: 4.7uF/35V (Tantalum type) or VISHAY (572D475X0025A2T)

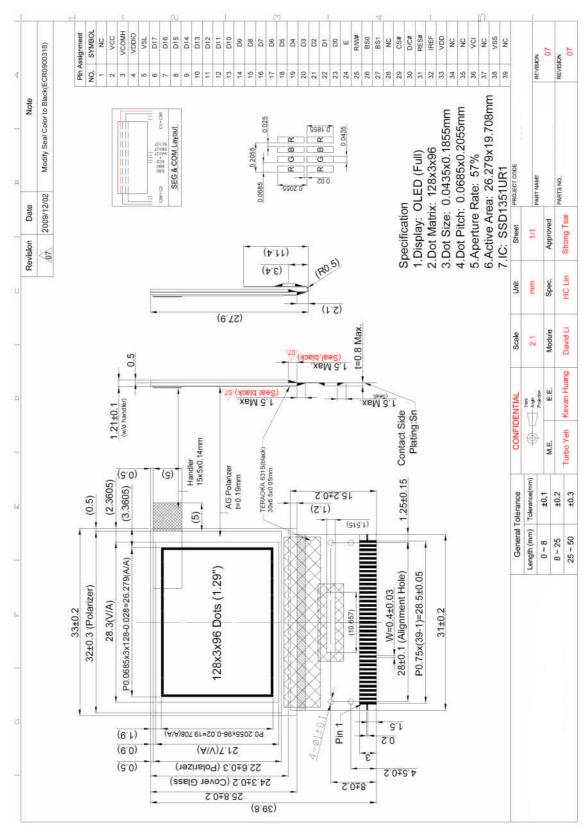
- R1: 1M ohm 1%(0603)
- R2: 50 ohm 1/4W
- D1, D2: RB480K(ROHM)

This circuit is for 8080 16bits interface

8.3 COMMAND TABLE

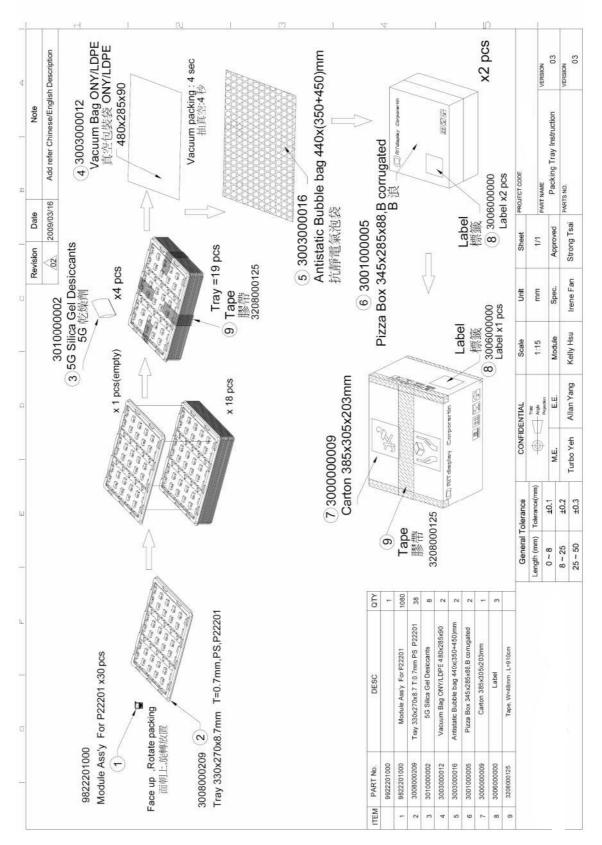
Refer to SSD1351 IC Spec.

9. RELIABILITY TEST CONDITIONS


No.	ltems	Specification	Quantity
1	High temp. (Non-operation)	85°C, 240hrs	5
2	High temp. (Operation)	70°C, 120hrs	5
3	Low temp. (Operation)	-40°C, 120hrs	5
4	High temp. / High humidity (Operation)	65°C, 90%RH, 96hrs	5
5	Thermal shock (Non-operation)	-40°C ~85°C (-40°C /30min; transit /3min; 85°C /30min; transit /3min) 1cycle: 66min, 20 cycles	5
6	Vibration	Frequency : 5~50HZ, 0.5G Scan rate : 1 oct/min Time : 2 hrs/axis Test axis : X, Y, Z	1 Carton
7	Drop	Height: 120cm Sequence : 1 angle < 3 edges and 6 faces Cycles: 1	1 Carton
8	ESD (Non-operation)	Air discharge model, ±8kV, 10 times	5

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for item 1, 4 & 5.


Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

10. EXTERNAL DIMENSION

REV.: A04

12. APPENDIXES

APPENDIX 1: DEFINITIONS

A. DEFINITION OF CHROMATICITY COORDINATE

The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W.

B. DEFINITION OF CONTRAST RATIO

The contrast ratio is defined as the following formula:

Contrast Ratio = Luminance of all pixels on measurement Luminance of all pixels off measurement

C. DEFINITION OF RESPONSE TIME

The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2.

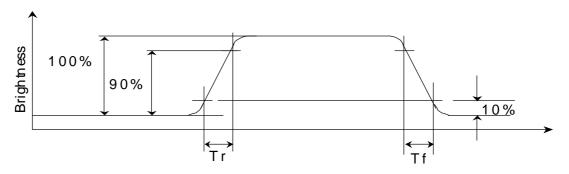
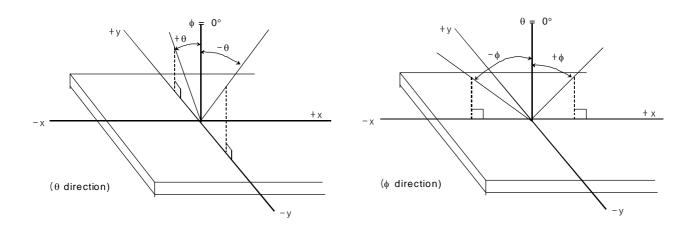
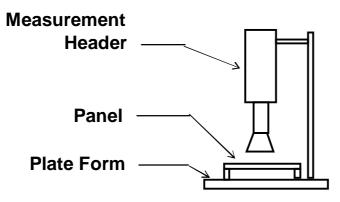



Figure 2: Response time

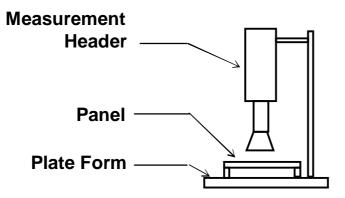
D. DEFINITION OF VIEWING ANGLE

The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value.

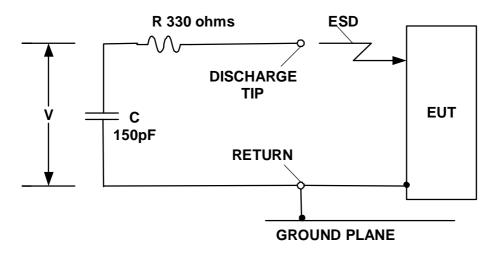


APPENDIX 2: MEASUREMENT APPARATUS

A. LUMINANCE/COLOR COORDINATE


PHOTO RESEARCH PR-705, MINOLTA CS-100

PR-705 / MINOLTA CS-100 Color Analyzer


B. CONTRAST / RESPONSE TIME / VIEW ANGLE

WESTAR CORPORATION FPM-510

Westar FPM-510 Display Contrast / Response time / View angle Analyzer

C. ESD ON AIR DISCHARGE MODE

APPENDIX 3: PRECAUTIONS

A. RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.