6N135/6

HCNW135/6, HCNW4502/3
TECHNOLOGIES
HCPL-2502/0452/0453/0500/0501/4502/4503
Single Channel, High Speed Optocouplers

Data Sheet

Description

These diode-transistor optocouplers use an insulating layer between a LED and an integrated photodetector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output-transistor collector increase the speed up to ahundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

These single channel optocouplers are available in 8 -Pin DIP, SO-8 and Widebody package configurations.

The 6N135, HCPL-0500, and HCNW135 are for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for these devices is 7% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The 6N136, HCPL-2502, HCPL-0501, and HCNW136 are designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR for these devices is 19% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

Functional Diagram

* NOTE: FOR 4502/3, 0452/3, PIN 7 IS NOT CONNECTED.

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

Features

- $15 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode transient immunity at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ (4503/ 0453)
- High speed: 1 Mb/ s
- TTL compatible
- Available in 8-Pin DIP, S0-8, widebody packages
- Open collector output
- Guaranteed performance from temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Safety approval

UL Recognized - 3750 V rms for 1 minute (5000 V rms for
1 minute for HCNW and Option 020 devices) per UL1577 CSA Approved IEC/ EN/ DIN EN 60747-5-2 Approved

- $V_{\text {IORM }}=630 \mathrm{~V}$ peak for HCPL-4503\#060
- $\mathrm{V}_{\text {IORM }}=1414 \mathrm{~V}$ peak for HCNW devices
- Dual channel version available (253X/4534/ 053X/ 0534)
- MIL-PRF-38534 hermetic version available (55XX/ 65XX/ 4N55)

Applications

- High voltage insulation
- Video signal isolation
- Power transistor isolation in motor drives
- Line receivers
- Feedback element in switched mode power supplies
- High speed logic ground isolation - TTL/ TTL, TTL/ CM OS, TTL LSTTL
- Replaces pulse transformers
- Replaces slow phototransistor isolators
- Analog signal ground isolation

The HCPL-4502, HCPL-0452, and HCNW4502 provide the electrical and switching performance of the 6N136, HCPL-0501, and HCNW136 with increased ESD protection.

The HCPL-4503, HCPL-0453, and HCNW4503 are similar to the HCPL-4502, HCPL-0452, and HCNW4502 optocouplers but have increased common mode transient immunity of $15 \mathrm{kV} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ guaranteed.

Schematic

* NOTE: FOR HCPL-4502/-3, HCPL-0452/3,

HCNW4502/3, PIN 7 IS NOT CONNECTED.

Selection Guide

M inimum CM R		Current Transfer Ratio (\%)	8-Pin DIP (300 Mil)		Small-Outline S0-8		Widebody (400 M il) Single Channel Package	Hermetic Single and Dual Channel Packages*
$\begin{gathered} \mathrm{dV} / \mathrm{dt} \\ (\mathrm{~V} / \mu \mathrm{s}) \end{gathered}$	$\begin{aligned} & V_{C M} \\ & (V) \end{aligned}$		Single Channel Package	Dual Channel Package*	Single Channel Package	Dual Channel Package*		
1,000	10	7	6N135	HCPL-2530	HCPL-0500	HCPL-0530	HCNW 135	
		19	$\begin{gathered} \text { 6N } 136 \\ \text { HCPL-4502† } \end{gathered}$	HCPL-2531	$\begin{gathered} \text { HCPL-0501 } \\ \text { HCPL-0452† } \end{gathered}$	HCPL-0531	$\begin{gathered} \text { HCNW } 136 \\ \text { HCNW } 4502 \dagger \end{gathered}$	
		15	HCPL-2502					
15,000	1500	19	HCPL-4503†	HCPL-4534	HCPL-0453 \dagger	HCPL-0534	HCNW 4503 \dagger	
1,000	10	9						$\begin{gathered} \text { HCPL-55XX } \\ \text { HCPL-65XX } \\ 4 N 55 \end{gathered}$

*Technical data for these products are on separate Avago publications.
\dagger Pin 7 , transistor base, is not connected.

Ordering Information

Specify Part Number followed by Option Number (if desired).

Example:

HCPL-4503 \#XXXX

\square	$020=$ UL 5000 V rms/1 Minute Option*
\square	$060=$ IEC/EN/DIN EN $60747-5-2 \mathrm{~V}_{\text {IORM }}=630 \mathrm{~V}$ peak Option**
$300=$ Gull Wing Surface Mount Option \dagger	
$\square 500=$ Tape and Reel Packaging Option	
\square XXXE $=$ Lead Free Option	

Option data sheets available. Contact your Avago sales representative or authorized distributor for information.
*For 6N135/6 and HCPL-4502/3 only.
${ }^{* *}$ For HCPL-4503 only. Combination of Option 020 and Option 060 is not available.
\dagger Gull wing surface mount option applies to through hole parts only.

Remarks: The notation "\#" is used for existing products, while (new) products launched since 15th July 2001 and lead free option will use "-"

Package Outline Drawings

8-Pin DIP Package (6N135/ 6, HCPL-4502/ 3, HCPL-2502)

DIMENSIONS IN MILLIMETERS AND (INCHES).
*MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin DIP Package with Gull Wing Surface M ount Option 300 ($6 \mathrm{~N} 135 / 6$, HCPL-4502/ 3)

Small Outline SO-8 Package (HCPL-0500/1, HCPL-0452/3)

8-Pin Widebody DIP Package (HCNW 135/ 6, HCNW 4502/3)

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW 135/ 6, HCNW 4502/ 3)

Solder Reflow Temperature Profile

Note: Use of non-chlorine-activated fluxes is highly recommended.

Recommended Pb-Free IR Profile

NOTES:
THE TIME FROM $25^{\circ} \mathrm{C}$ to PEAK TEMPERATURE $=8$ MINUTES MAX.
$\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {smin }}=150^{\circ} \mathrm{C}$

Note: Use of non-chlorine-activated fluxes is highly recommended.

Regulatory Information
The devices contained in this data sheet have been approved by the following organizations:

UL
Recognized under UL 1577,
Component Recognition Program,
File E55361.

CSA

Approved under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/ EN/ DIN EN 60747-5-2
Approved under
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884
Teil 2):2003-01
(HCNW and Option 060 only)

Insulation and Safety Related Specifications

Parameter	Symbol	$\begin{gathered} \hline \text { 8-Pin DIP } \\ \text { (300 Mil) } \\ \text { Value } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{SO}-8 \\ & \text { Value } \end{aligned}$	Widebody (400 Mil) Value	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	9.6	mm	M easured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	M easured from input terminals to output terminals, shortest distance path along body.
M inimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	4.0	mm	M easured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	200	Volts	DIN IEC 112/ VDE 0303 Part 1
Isolation Group		IIIa	IIIa	IIIa		$\begin{aligned} & \text { Material Group } \\ & \text { (DIN VDE 0110, 1/ 89, Table 1) } \end{aligned}$

Option 300-surface mount classification is Class A in accordance with CECC 00802.

IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics (HCPL-4503 OPTION 060 ONLY)

Description	Symbol	Characteristic	Units
```Installation classification per DIN VDE 0110/ 1.89, Table 1 for rated mains voltage \(\leq 300 \mathrm{~V}\) rms for rated mains voltage \(\leq 450 \mathrm{~V}\) rms```		I-IV	
		I-III	
Climatic Classification		55/100/ 21	
Pollution Degree (DIN VDE 0110/ 1.89)		2	
M aximum W orking Insulation Voltage	$V_{\text {IORM }}$	630	$\checkmark$ peak
Input to Output Test Voltage, M ethod b*   $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$,   Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1181	$\checkmark$ peak
Input to Output Test Voltage, M ethod a* $V_{\text {IORM }} \times 1.5=V_{\text {PR }}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{P R}$	945	$\checkmark$ peak
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {IOTM }}$	6000	$\checkmark$ peak
Safety Limiting Values   ( $M$ aximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.)   Case Temperature   Input Current   Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{S}} \\ \mathrm{I}_{\mathrm{S}, \text { INUT }} \\ \mathrm{P}_{\mathrm{S}, \text { OUTPUT }} \end{gathered}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	${ }^{\circ} \mathrm{C}$   mA   mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{S}}$	$\geq 10^{9}$	$\Omega$

IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics (HCNW 135/ 6, HCNW4502/ 3 ONLY)

Description	Symbol	Characteristic	Units
```Installation classification per DIN VDE 0110/ 1.89, Table 1 for rated mains voltage \(\leq 600 \mathrm{~V}\) rms for rated mains voltage \(\leq 1000 \mathrm{~V}\) rms```		I-IV	
		I-III	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/ 1.89)		2	
M aximum W orking Insulation Voltage	$V_{\text {IORM }}$	1414	V peak
Input to Output Test Voltage, M ethod b* $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge <5 pC	$V_{\text {PR }}$	2652	\checkmark peak
Input to Output Test Voltage, M ethod a* $V_{\text {IORM }} \times 1.5=V_{\text {PR }}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2121	\checkmark peak
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$)	VIOTM	8000	V peak
Safety Limiting Values (M aximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.) Case Temperature Input Current Output Power	T_{s} $\mathrm{I}_{\mathrm{S}, \text { INPUT }}$ $\mathrm{P}_{\mathrm{S}, \text { OUTPut }}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \\ & \hline \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$	R_{S}	$\geq 10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/ EN/ DIN EN 60747-5-2, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

Absolute Maximum Ratings

Parameter	Symbol	Device	Min.	Max.	Units	Note
Storage Temperature*	Ts		-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature*	T_{A}	$\begin{gathered} \text { 8-Pin DIP } \\ \text { S0-8 } \end{gathered}$	-55	100	${ }^{\circ} \mathrm{C}$	
		Widebody	-55	85		
A verage Forw ard Input Current*	$\mathrm{IF}_{\text {(AVG })}$			25	mA	1
Peak Forw ard Input Current* (50% duty cycle, 1 ms pulse width) (50\% duty cycle, 1 ms pulse width)	$\mathrm{IF}_{\text {(PEAK) }}$	$\begin{gathered} \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$		50	mA	2
		Widebody		40		
Peak Transient Input Current* ($\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps)	1 If (TRANS)	$\begin{gathered} \hline \text { 8-Pin DIP } \\ \text { S0-8 } \end{gathered}$		1	A	
		Widebody		0.1		
Reverse LED Input Voltage* (Pin 3-2)	$V_{\text {R }}$	$\begin{gathered} \text { 8-Pin DIP } \\ \text { S0-8 } \end{gathered}$		5	V	
		Widebody		3		
Input Power Dissipation*	$\mathrm{P}_{\text {IN }}$	$\begin{gathered} \text { 8-Pin DIP } \\ \text { S0-8 } \end{gathered}$		45	mW	3
		Widebody		40		
A verage Output Current* (Pin 6)	Io(Avg)			8	mA	
Peak Output Current*	Io(PEAK)			16	mA	
Emitter-Base Reverse Voltage* (Pin 5-7, except 4502/3, 0452/3)	$\mathrm{V}_{\text {EBR }}$			5	V	
Supply Voltage (Pin 8-5)	$\mathrm{V}_{\text {cc }}$		-0.5	30	V	
Output Voltage (Pin 6-5)	Vo		-0.5	20	V	
Supply Voltage* (Pin 8-5)	$\mathrm{V}_{\text {cc }}$		-0.5	15	V	
Output Voltage* (Pin 6-5)	Vo		-0.5	15	V	
Base Current* (Pin 7, except 4502/ 3, 0452/3)	I_{B}			5	mA	
Output Power Dissipation*	Po			100	mW	4
Lead Solder Temperature* (Through-Hole Parts Only) 1.6 mm below seating plane, 10 seconds	TLS	8-Pin DIP		260	${ }^{\circ} \mathrm{C}$	
up to seating plane, 10 seconds		Widebody		260	${ }^{\circ} \mathrm{C}$	
Reflow Temperature Profile	TRP	$\begin{gathered} \hline \text { SO-8 and } \\ \text { Option } 300 \\ \hline \end{gathered}$	See Package Outline Drawings section			

*Data has been registered with J EDEC for the 6N135/ 6N136.

Electrical Specifications (DC)

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherw ise specified. See note 13.

*For J EDEC registered parts.
${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Specifications (AC)

Over recommended temperature ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$), $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

*For J EDEC registered parts.
${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Package Characteristics

Over recommended temperature $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ unless otherw ise specified.

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Input-Output M omentary Withstand Voltage**	$\mathrm{V}_{\text {ISO }}$	$\begin{gathered} \hline \text { 8-Pin DIP } \\ \mathrm{SO}-8 \end{gathered}$	3750			V rms	$\begin{aligned} & \text { RH < } 50 \%, \\ & t=1 \text { min., } \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		6,14
		Widebody	5000						6,15
		$\begin{gathered} \hline \text { 8-Pin DIP } \\ \text { (Option 020) } \end{gathered}$	5000						$\begin{gathered} 6,12, \\ 15 \end{gathered}$
	I_{1-0}	8 -Pin DIP			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{l}-\mathrm{O}}=3 \mathrm{kVdc}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		6,16
Input-Output Resistance	R_{1-0}	$\begin{gathered} 8-\mathrm{Pin} \text { DIP } \\ \mathrm{SO}-8 \end{gathered}$		10^{12}		Ω	$\mathrm{V}_{1-0}=500 \mathrm{Vdc}$		6
		Widebody	10^{12}	10^{13}			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
			10^{11}				$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		
Input-Output Capacitance	$\mathrm{C}_{1.0}$	$\begin{gathered} 8-\mathrm{Pin} \text { DIP } \\ \mathrm{SO}-8 \end{gathered}$		0.6		pF	$f=1 \mathrm{MHz}$		6
		Widebody		0.5	0.6				

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
**The Input-Output M omentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(8$-Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(8$-Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(8$-Pin DIP $)$. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(8$-Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100 .
6. Device considered a two-terminal device: Pins $1,2,3$, and 4 shorted together and Pins $5,6,7$, and 8 shorted together.
7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal, $V_{C M}$, to assure that the output will remain in a Logic High state (i.e., $V_{0}>2.0 \mathrm{~V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{C M} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{0}<0.8 \mathrm{~V}$).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
11. The J EDEC registration for the 6 N 136 specifies a minimum CTR of 15%. Avago guarantees a minimum CTR of 19%.
12. See Option 020 data sheet for more information.
13. Use of a 0.1 f bypass capacitor connected between pins 5 and 8 is recommended.
14. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% Production test shown in the IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics Table if applicable.
15. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{1.0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% Production test shown in the IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics Table if applicable.
16. This rating is equally validated by an equivalent ac proof test.

Figure 1. DC and pulsed transfer characteristics.

Figure 2. Current transfer ratio vs. input current.

Figure 3. Input current vs. forw ard voltage.

Figure 4. Current transfer ratio vs. temperature.

Figure 5. Propagation delay vs. temperature.

Figure 6. Propagation delay time vs. load resistance.

Figure 7. Logic high output current vs. temperature.

Figure 8. Small-signal current transfer ratio vs. quiescent input current.

Figure 9. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/ EN/ DIN EN 60747-5-2.

Figure 10. Frequency response.

Figure 11. Switching test circuit.

Figure 12. Test circuit for transient immunity and typical waveforms.

