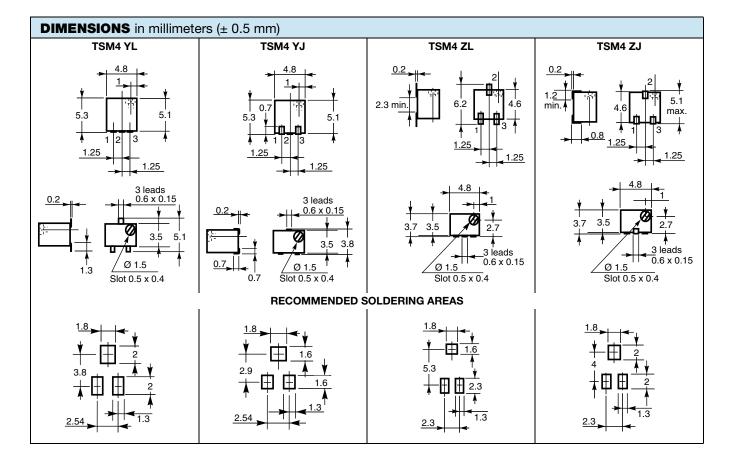
TSM4 Vishay Sfernice

5 mm Square Surface Mount Miniature Trimmers Multi-Turn Cermet Sealed

www.vishay.com

3D Models Available


VISHAY

The TSM4 trimming potentiometer has been designed for surface mount applications and offers volumetric efficiency 5 mm x 5 mm x 3.7 mm with high performance and stability.

The TSM4 design is suitable for both manual or automatic operation, and can withstand vapor phase and reflow soldering techniques.

FEATURES

- 0.25 W at 70 °C
- Professional and industrial grade
- Wide ohmic range (10 Ω to 1 M Ω)
- Low contact resistance variation (2 % or 3 Ω)
- Small size for optimum packaging density
- Tests according to CECC 41000 or IEC 60393-1
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Vishay Sfernice

TSM4

Resistive element	Cermet				
Electrical travel	11 turns ± 2				
Resistance range	10 Ω to 1 M Ω				
Standard series	1 - 2 - 5				
Tolerance standard	± 10 %				
Linear Power rating	0.25 W at 70 °C				
Circuit diagram	$ \begin{array}{c} a \\ c \\ (1) \\ b \\ (2) \end{array}^{c} c \\ (3) \\ (3$				
Temperature coefficient See Standard Resistance Element table					
Limiting element voltage (linear law)	200 V				
Contact resistance variation (typical)	2 % or 3 Ω				
End resistance (typical)	1 Ω				
Dielectric strength (RMS)	600 V				
Insulation resistance (500 V _{DC})	10 ⁶ ΜΩ				

MECHANICAL SPECIFICATIONS				
Mechanical travel	13 turns ± 2			
Operating torque (max. Ncm)	1			
End stop torque (Ncm)	Clutch action (2 turns max.)			
Unit weight (max. g)	0.15			
Wiper (actual travel)	Positioned at approx. 50 %			

ENVIRONMENTAL SPECIFICATIONS				
Temperature range	-55 °C to +125 °C			
Climatic category	55/125/56			
Sealing	Sealed container IP67			
MSL level	1			

SOLDERING RECOMMENDATIONS Recommended reflow profile 2, see Application Note www.vishay.com/doc?52029

2

Document Number: 51009

www.vishay.com

Vishay Sfernice

PERFORMANCES						
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS				
12313	CONDITIONS	$\Delta R_{T}/R_{T}$	∆ R₁₋₂/R₁₋₂	OTHER		
Electrical endurance	1000 h at rated power 90'/30' - ambient temp. 70 °C	±2%	± 3 %	Contact res. variation: $\Delta < 1$ % Rn		
Climatic sequence Phase A dry heat 125 °C Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles		±2%	± 3 %	Dielectric strength: 600 V_{RMS} Insulation resistance: $> 10^4~M\Omega$		
Damp heat, steady state Temperature 40 °C - RH 93 % 56 days		±2%	± 3 %	Dielectric strength: 600 V _{RMS} Insulation resistance: > $10^4 M\Omega$		
Change of temperature -55 °C to +125 °C 5 cycles		±1%		$\Delta V_{1-2}/V_{1-3} \le \pm 2 \%$		
Mechanical endurance	100 cycles - rated power	± (3 % + 3 Ω)				
Shock	50 g - 11 ms 3 successive shocks in 3 directions	±1%		$\Delta V_{1-2}/V_{1-3} \le \pm 1 \%$		
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> - 6 h	±1%		$\Delta V_{1-2}/V_{1-3} \leq \pm 1 \%$		

Note

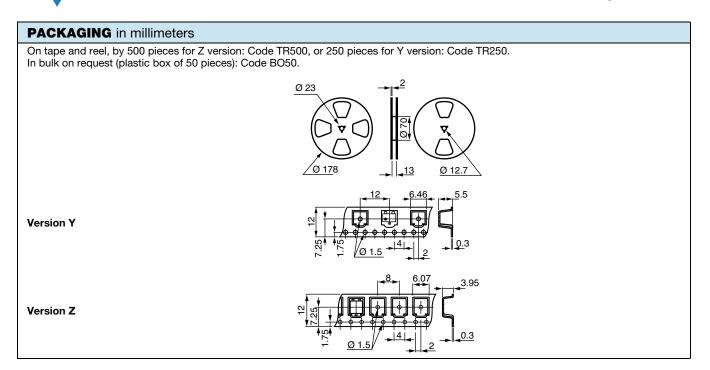
• Nothing stated herein shall be construed as a guarantee of quality or durability

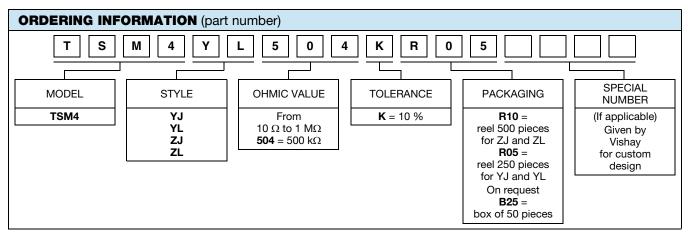
STANDARD RESISTANCE VALUES		LINEAR LAW				
	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CURRENT THROUGH ELEMENT	TCR -55 °C +125 °C		
Ω	W	V	mA	ppm/°C		
10	0.25	1.58	158			
20	0.25	2.23	112			
50	0.25	3.53	77			
100	0.25	5.00	50			
200	0.25	7.07	35			
500	0.25	11.2	22			
1K	0.25	15.8	15.8			
2K	0.25	22.3	11.2	105		
5K	0.25	35.3	7.1	± 100		
10K	0.25	50.0	5.0			
20K	0.25	70.7	3.5			
50K	0.25	112	2.2			
100K	0.25	158	1.6			
200K	0.25	200	1.0			
500K	0.08	200	0.4			
1M	0.04	200	0.2			

MARKING

Vishay trademark, ohmic value, manufacturing date

The ohmic value is indicated by a 3 figure code, the first two are significant figures, the third one is the multiplier.


Example: $100 = 10 \Omega$


 $101 = 100 \Omega$

102 = 1000 Ω 503 = 50 000 Ω www.vishay.com

TSM4

Vishay Sfernice

DESCRIPTION (for information only)						
TSM4	YL	500K	10 %		TR	e3
MODEL	STYLE	VALUE	TOLERANCE	SPECIAL	PACKAGING	LEAD (Pb)-FREE

RELATED DOCUMENTS				
APPLICATION NOTES				
Potentiometers and Trimmers	www.vishay.com/doc?51001			
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029			

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

TSM4YL101KR05	TSM4YL202KR0	5 TSM4YL104KR0	5 TSM4YL501KR0	5 TSM4YJ101KR0	5 TSM4YJ102KR05
TSM4YJ103KR05	TSM4YJ104KR05	TSM4YJ105KR05	TSM4YJ201KR05	TSM4YJ202KR05	TSM4YJ203KR05
TSM4YJ204KR05	TSM4YJ501KB25	TSM4YJ501KR05	TSM4YJ502KB25	TSM4YJ502KR05	TSM4YJ503KR05
TSM4YJ504KR05	TSM4YL101KB25	TSM4YL102KR05	TSM4YL103KR05	TSM4YL105KB25	TSM4YL201KR05
TSM4YL203KR05	TSM4YL204KR05	TSM4YL501KB25	TSM4YL502KR05	TSM4YL503KR05	TSM4YL504KR05
TSM4ZJ101KR10	TSM4ZJ102KR10	TSM4ZJ103KR10	TSM4ZJ105KR10	TSM4ZJ203KR10	TSM4ZJ501KR10
TSM4ZJ502KR10	TSM4ZJ503KR10	TSM4ZJ504KR10	TSM4ZL101KR10	TSM4ZL102KR10	TSM4ZL103KR10
TSM4ZL201KR10	TSM4ZL202KR10	TSM4ZL203KR10	TSM4ZL204KR10	TSM4ZL501KR10	TSM4ZL502KR10
TSM4ZL503KR10	TSM4ZL504KR10				