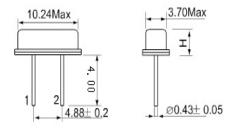
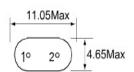
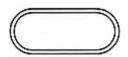
Win-win To Long


Features

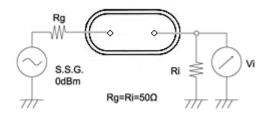

- 1-port Resonator
- Metal Case for HC-49S
- RoHS compatible
- Package size 10.24x3.70x11.05mm³
- Electrostatic Sensitive Device(ESD)

Package Dimensions (HC-49S)

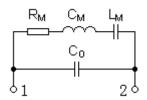
Pin Configuration



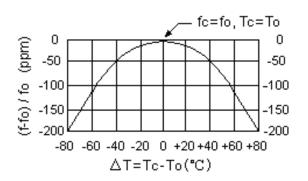
1	Input/Output
2	Output/Input



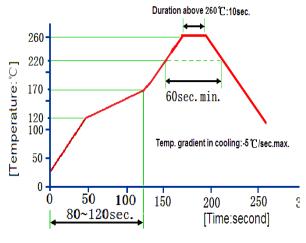
Marking



WTL Trademark	
R	SAW Resonator
315	Part number


Test Circuit

Equivalent LC Model



Temperature Characteristics Diagram

The curve shown above accounts for resonator contribution only and does not include LC component

Recommended Reflow Soldering

Reflow cycles:3 cycles max.

Frequency Response

Performance

Maximum Rating

Item		Value	Unit
DC Voltage	V_{DC}	10	V
Operation Temperature	Т	-40 ~ +85	$^{\circ}$
Storage Temperature	T _{stg}	-55 ~ +125	$^{\circ}$ C
RF Power Dissipation	Р	10	dBm

Electronic Characteristics

Test Temperature: 25°C±2°C

Terminating source impedance: 50Ω Terminating load impedance: 50Ω

Item			Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	fc		315.00		MHz
Frequency	Tolerance from 315.00MHz	$\triangle f_c$		±75		KHz
Insertion Loss(min)		IL		1.8	2.3	dB
Quality Factor	Unloaded Q	Q _U		21566		

	50Ω Loaded Q	Q _L		3554		
Temperature	Turnover Temperature	T ₀	25	40	55	$^{\circ}$
Stability	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			МΩ
RF	Motional Resistance	R _M		19.7	22.0	Ω
Equivalent RLC Model	Motional Inductance	L _M		215.5		μΗ
	Motional Capacitance	См		1.18		fF
	Static Capacitance	C ₀	1.80	2.08	2.4	pF

Reliability (The SAW components shall remain electrical performance after tests)

No	Test item	Test condition		
1	Temperature Storage	(1) Temperature: 85°C±2°C, Duration: 250h,Recovery time: 2h: (2) Temperature: −55°C±3°C, Duration: 250h, Recovery time:		
2	Humidity Test	Conditions: $60^{\circ}\text{C} \pm 2^{\circ}\text{C}$, $90 \sim 95\%$ RH Duration: 250		
3	Thermal Shock	Heat cycle conditions: TA=-40 $^{\circ}$ C ±3 $^{\circ}$ C, TB=85 $^{\circ}$ C ±2 $^{\circ}$ C, t1=Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2	,	
4	Vibration Fatigue	Frequency of vibration: 10~55Hz Amplitude:1.5mm Directions: X,Y and Z Duration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
6	Solder Ability Test	Temperature: 245°C±5°C Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5		

	Resistance to	(1)Thickness of PCB:1mm,Solder condition: 260 ℃±5 ℃,Duration: 10±1s
7	Soldering	(2)Temperature of Soldering Iron: 350℃±10℃,Duration: 3~4s,
	Heat	Recovery time : 2 ± 0.5h

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may **be soldered**. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.