

SOT-23 Formed SMD Package

BC856 BC857 BC858

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors

An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

Marking $BC856 = 3D$ $BC856A = 3A$ $BC856B = 3B$	PACKAGE OUTI ALL DIMENSI	
BC85B = 3B BC857 = 3H BC857A = 3E BC857B = 3F BC858 = 3M BC858A = 3I BC858B = 3K BC858C = 3L	3.0 2.8 0.48 0.38 3	0.14 0.09 0.70 0.50 1.4 1.2
Pin configuration 1 = BASE 2 = EMITTER 3 = COLLECTOR	1.02 0.89 2.00 0.40 1.80	R0.1 (.004) R0.05 (.002) 0.02 1.15 0.90

ABSOLUTE MAXIMUM RATINGS

			BC856	BC857	BC85	58
Collector-emitter voltage (+ $V_{BE} = 1 V$)	$-V_{CEX}$	max.	80	50	30	\overline{V}
Collector-emitter voltage (open base)	-V _{CE0}	max.	65	45	30	V
Collector current (peak value)	$-I_{CM}$	max.		200		mA
Total power dissipation						
$up to T_{amb} = 60 ^{\circ}C$	P_{tot}	max.		<i>250</i>		mW
Junction temperature	T_{j}	max.		<i>150</i>		$^{\circ}$ C
Small-signal current gain						
$-I_C = 2 \text{ mA; } -V_{CE} = 5 \text{ V; } f = 1 \text{ kHz}$	h_{fe}		7	75 to 90	0	
Transition frequency at $f = 100 \text{ MHz}$						
$-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	f_T	>		100		$M\!H\!z$
Noise figure at $R_S = 2 \text{ kW}$						
$-I_C = 200 \text{ mA}$; $-V_{CE} = 5 \text{ V}$						
f = 1 kHz; B = 200 Hz	$\boldsymbol{\mathit{F}}$	<		10		dB

RATINGS (at $T_A = 25$ °C unless otherwise specified) Limiting values

Zamang values		i	BC856	BC857	BC85	8
Collector-base voltage (open emitter)	$-V_{CBO}$	max.	80	50	30	\overline{V}
Collector-emitter voltage $(+V_{BE} = 1 \ V)$	$-V_{CEX}$	max.	<i>80</i>	50	30	V
Collector-emitter voltage (open base)	$-V_{CEO}$	max.	65	45	30	V
Emitter-base voltage (open collector)	$-V_{EBO}$	max.	5	5	5	V
Collector current (d.c.)	$-I_C$	max.		100	l	mA
Collector current (peak value)	$-I_{CM}$	max.		200		mA
Emitter current (peak value)	I_{EM}	max.		200		mA
Base current (peak value)	$-I_{BM}$	max.		200		mA
Total power dissipation						
up to T_{amb} : 60 °C	P_{tot}	max.		<i>250</i>		mW
Storage temperature	T_{stg}		-3	55 to +1	50	${}^{\!$
Junction temperature	T_j	max.		150		${\mathscr C}$
THERMAL CHARACTERISTICS						
$T_j = P_X (R_{th j-t} + R_{th t-s} + R_{th s-a})^+ T_{amb}$ Thermal resistance						
From junction to tab	R_{thj-t}	=		60		KW
From tab to soldering points	$R_{th\ t-s}$	=		280		KW
From soldering points to ambient	R _{th s-a}	=		90		KW
	ui s-a					
CHARACTERISTICS						
$T_j = 25$ °C unless otherwise specified						
Collector cut-off current						
$I_E = 0$; $-V_{CB} = 30V$; $T_i = 25^{\circ}C$	$-I_{CBO}$	typ.		1		nΑ
J		<		15		nA
$T_j = 150^{\circ} C$	-I _{CBO}	<		4		$\mathfrak{m}A$
Base-emitter voltage						
$-I_C = 2 \text{ mA; } -V_{CE} = 5 \text{ V}$	$-V_{BE}$	typ.		650		mV
IC Z III I, VCE UV	* DE	ijρ.	6	200 to 7.	50	mV
			U		<i>,</i>	
$-I_C = 10 \text{ mA; } -V_{CE} = 5 \text{ V}$	$-V_{BE}$	<		820		mV
Saturation voltages						
$-I_C = 10 \text{ mA}; -I_B = 0.5 \text{ mA}$	-V _{CEsat}	typ.		75		mV
, <u>b</u>	CLour	<		300		mV
	Vpr.			700		mV
	-V _{BEsat}	typ.		700		III V
$-I_C = 100 \text{ mA}; -I_B = 5 \text{ mA}$	-V _{CEsat}	typ.		250		mV
0 0	02541	<		650		mV
	-V _{BEsat}	typ.		850		mV
Knee voltage	DESAL	JF.				• •
$-I_C = 10 \text{ mA}$; $-I_B = \text{value for which}$						
$-I_C = 11 \text{ mA at } -V_{CE} = 1 \text{ V}$	-V _{CEK}	typ.		250		mV
10 - 11 mm i ac v CE - 1 v	CEK			600		mV
		<		000		111 V

BC856 BC857 BC858

Collector capacitance at f	= 1 MHz				
$I_E = I_e = 0; -V_{CB} = 1$	10 V	C_c	typ.	4,5	рF
Transition frequency at f	= 100 MHz				
$-I_C = 10 \text{ mA; } -V_{CE} = 10 \text{ mA; } -$	= 5 V	f_T	>	100	MHz
Small-signal current gain	at f = 1 kHz				
$-I_C = 2 \text{ mA}; -V_{CE} =$	5 V	h_{fe}	125 to	o 800	
Noise figure at $R_S = 2 \text{ kV}$	V				
$-I_C = 200 \text{ mA; } -V_{CE}$	= 5 V				
f = 1 kHz; B = 200 F	łz	F	typ.	2	dB
			<	10	dB
D.C. current gain					
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ N}$	V BC856	h_{FE}	220 to	o 475	
	BC858/857	$h_{\!F\!E}$	125 to	o 800	
	BC856A/857A/858A	$h_{\!F\!E}$	125 to	o 250	
	BC856B/857B/858B	h_{FE}	220 to	o 475	
	BC857C/858C	h_{FE}	420 to	o 800	

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of

Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-579 6150 Fax + 91-11-579 9569, 579 5290

e-mail sales@cdil.com www.cdil.com