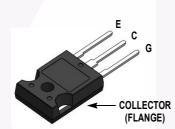
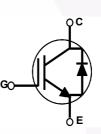


FGH40N60SMD 600 V, 40 A Field Stop IGBT

Features

- Maximum Junction Temperature : T_J = 175^oC
- Positive Temperaure Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)}$ = 1.9 V(Typ.) @ I_C = 40 A
- High Input Impedance
- Fast Switching: E_{OFF} = 6.5 uJ/A
- Tighten Parameter Distribution
- RoHS Compliant


Applications


· Solar Inverter, UPS, Welder, PFC, Telecom, ESS

October 2014

General Description

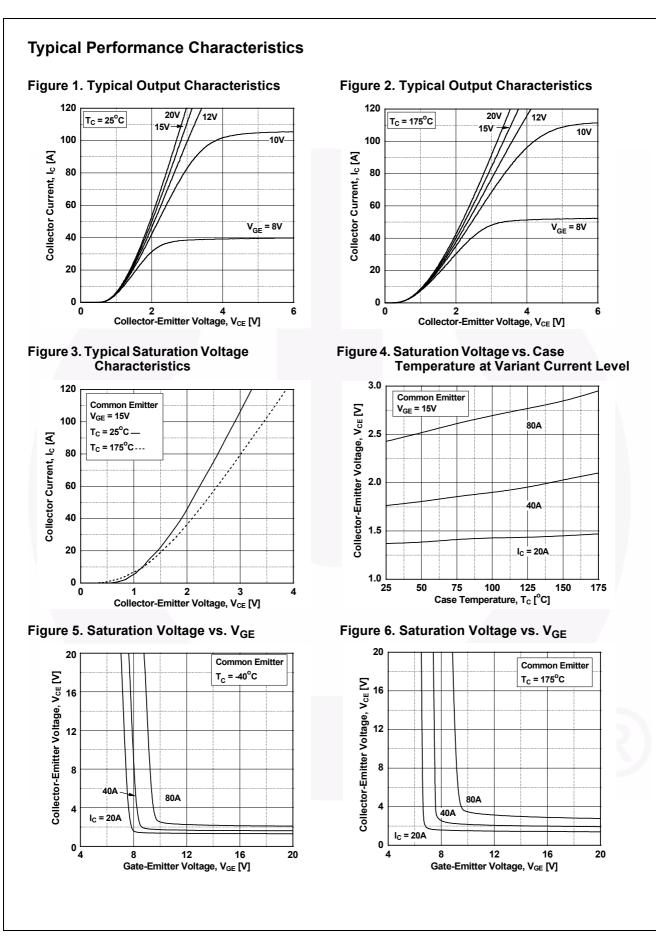
Using novel field stop IGBT technology, Fairchild's new series of field stop 2nd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

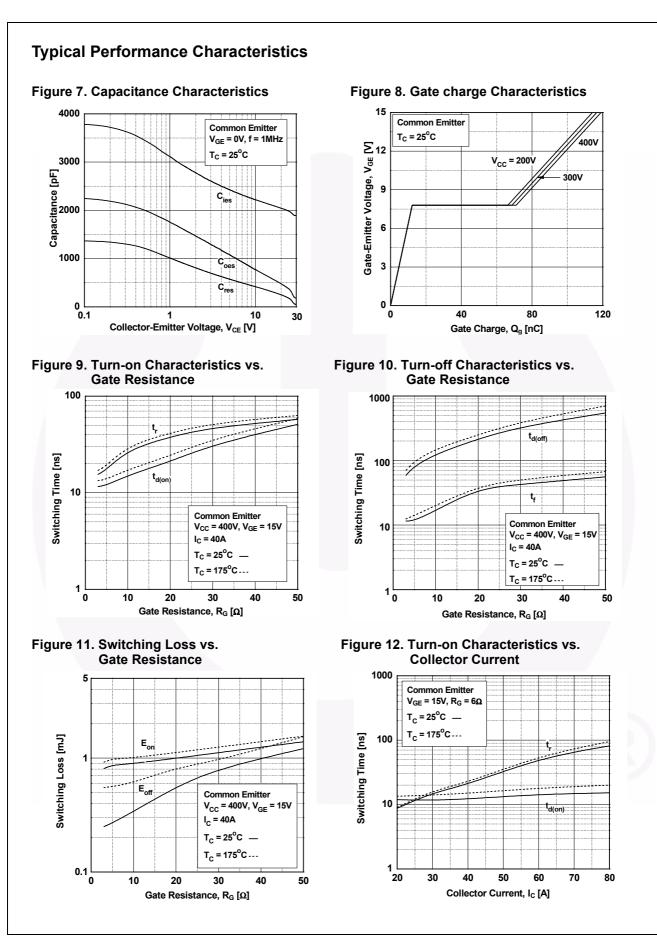
Symbol	Description		Ratings	Unit
V _{CES}	Collector to Emitter Voltage	600	V	
V _{GES}	Gate to Emitter Voltage	± 20	V	
	Transient Gate to Emitter Voltage	± 30	V	
I _C	Collector Current	@ T _C = 25°C 80		A
'U	Collector Current	@ T _C = 100 ^o C	40	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	120	A
IF	Diode Forward Current	@ T _C = 25°C	40	A
'F	Diode Forward Current	@ T _C = 100 ^o C	20	A
I _{FM (1)}	Pulsed Diode Maximum Forward Cur	120	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	349	W
. D	Maximum Power Dissipation	@ T _C = 100 ^o C	174	W
TJ	Operating Junction Temperature		-55 to +175	°C
T _{stg}	Storage Temperature Range	-55 to +175	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 secor	nds	300	°C

Notes:

1: Repetitive rating: Pulse width limited by max. junction temperature

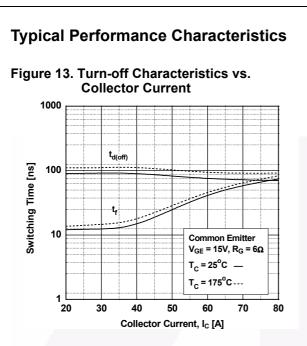

Symbo	I	Par	ramete	r		Тур.		Max.		Unit	
R _{0JC} (IGBT)	Thern	nal Resistance, Junct	ise		-		0.43		°C/W		
R _{0JC} (Diode)				ise		-		1.5		°C/W	
R _{θJA}	Thern	nal Resistance, Junct	ion to An	nbient		-		40		°C/W	
Package	e Marki	ng and Order	ing In	form	ation		- I		-		
	lumber Top Mark Pack			Packing Method	Reel Size		Tape Wid	th Qu	Quantity		
FGH40N60SMD FGH40N60SMD TO-2		247	Tube	N/A		N/A		30			
Electric	al Char	acteristics of	the lo	GBT	T _C = 25°C unless othe	rwise noted					
Symbol		Parameter		Test Conditions		ns	Min.	Тур.	Max.	Unit	
Off Charact		o Emittor Prockdown	Voltage	V	0 \/ _ = 250 \		600			V	
BV _{CES} ∆BV _{CES}		o Emitter Breakdown ure Coefficient of Brea		-	V _{GE} = 0 V, I _C = 250 μA			-	-	V	
ΔT_J	Voltage	are obtained in bree		V_{GE} = 0 V, I _C = 250 μ A			-	0.6	-	V/ºC	
I _{CES}	Collector (ollector Cut-Off Current			V _{CE} = V _{CES} , V _{GE} = 0 V			-	250	μA	
I _{GES}	G-E Leakage Current			V _{GE} =	V _{GES} , V _{CE} = 0 V		-	-	± 400	nA	
On Charact	eristics										
V _{GE(th)}	G-E Thres	G-E Threshold Voltage			I _C = 250 μA, V _{CE} = V _{GE}			4.5	6.0	V	
		I _C = 40 A, V _{GE} = 15 V			- 1.9		2.5	V			
V _{CE(sat)}	Collector to Emitter Saturation Voltage				I _C = 40 A, V _{GE} = 15 V, T _C = 175°C			2.1	-	V	
Dynamic C	haracteris	tics							1		
C _{ies}	Input Cap						-	1880	-	pF	
C _{oes}		Output Capacitance Reverse Transfer Capacitance			V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz			180	-	pF	
C _{res}	Reverse T							50	-	pF	
	Charactori	stics								/	
Switching (Delay Time					· ·	12	16	ns	
t _{d(on)} t _r	Rise Time			-			_	20	28	ns	
t _{d(off)}		Delay Time		Voc =	400 V, I _C = 40 A,		-	92	120	ns	
t _f	Fall Time	,		$R_G = 6$	Ω, V _{GE} = 15 V,		-	13	17	ns	
E _{on}		Switching Loss		Inducti	ve Load, $T_C = 25^\circ$	d, T _C = 25ºC		0.87	1.30	mJ	
E _{off}		Switching Loss					-	0.26	0.34	mJ	
E _{ts}		ching Loss					-	1.13	1.64	mJ	
t _{d(on)}		Delay Time					-	15	-	ns	
t _r	Rise Time						-	22	-	ns	
t _{d(off)}	Turn-Off D	elay Time		$V_{CC} = $	400 V, I _C = 40 A,		-	116	-	ns	
t _f	Fall Time				R _G = 6 Ω, V _{GE} = 15 V,			16	-	ns	
E _{on}	Turn-On S	Switching Loss		Inducti	ve Load, T _C = 17	5°C	-	0.97	-	mJ	
E _{off}	Turn-Off S	Switching Loss		1			-	0.60	-	mJ	
E _{ts}	Tatal Curit	ching Loss		1			-	1.57	_	mJ	

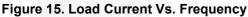
Electrical Characteristics of the IGBT (Continued)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
Qg	Total Gate Charge		-	119	180	nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	-	13	20	nC
Q _{gc}	Gate to Collector Charge	VGE - 13 V	-	58	90	nC

Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted

Symbol	Parameter		Test Condition	on	s	Min.	Тур.	Мах	Unit
V _{FM}	Diode Forward Voltage		20 A		T _C = 25°C	-	2.3	2.8	V
FIN			F 207		T _C = 175 ^o C	-	1.67	-	1
E _{rec}	Reverse Recovery Energy				T _C = 175 ^o C	-	48.9	-	uJ
t.	Diode Reverse Recovery Time	L = 20 A dL	20 A, dI _F /dt = 200 A/µs		T _C = 25°C	-	36	-	ns
۲r	blode Reverse Recovery fille		$1F = 20 A$, $0F at = 200 A \mu 3$		T _C = 175 ^o C	-	110	-	110
Q _{rr}	Diode Reverse Recovery Charge				T _C = 25°C	-	46.8	-	nC
~11	2.000 Hororor (000 for y charge				T _C = 175 ^o C	-	445	-	




©2010 Fairchild Semiconductor Corporation FGH40N60SMD Rev. C3

©2010 Fairchild Semiconductor Corporation FGH40N60SMD Rev. C3

www.fairchildsemi.com

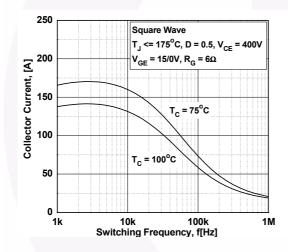
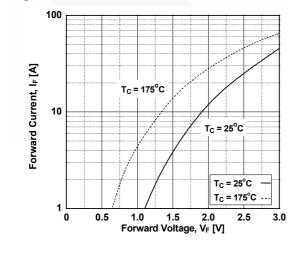
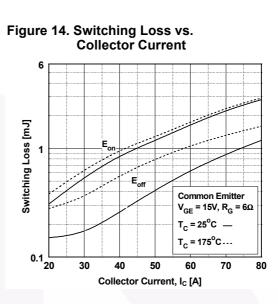




Figure 17. Forward Characteristics

Figure 16. SOA Characteristics

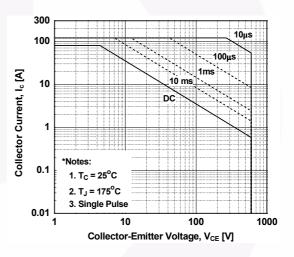
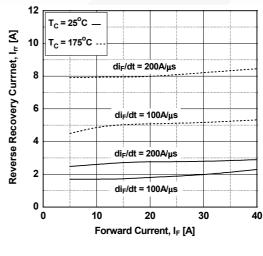
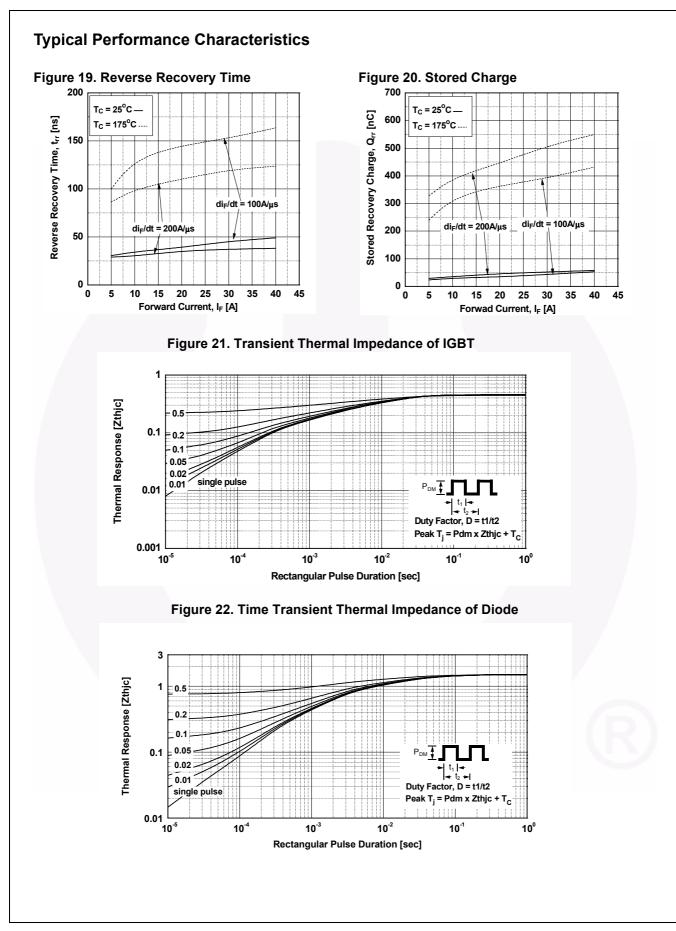
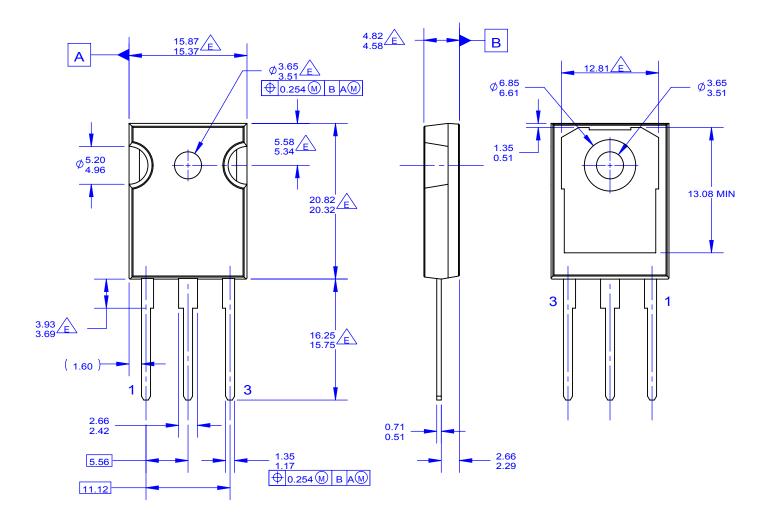





Figure 18. Reverse Recovery Current

©2010 Fairchild Semiconductor Corporation FGH40N60SMD Rev. C3

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE F. DRAWING FILENAME: MKT-TO247A03_REV03

FAIRCHILD. TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. **OPTOPLANAR[®]** AccuPower™ F-PFS™ FRFET® Awinda® ® AX-CAP®* Global Power ResourceSM TinyBoost[®] BitSiC™ GreenBridge™ TinyBuck® PowerTrench[®] Build it Now™ Green FPS™ TinyCalc™ PowerXS™ Programmable Active Droop™ CorePLUS™ Green FPS™ e-Series™ TinyLogic® TINYOPTO™ CorePOWER™ Gmax™ QFET CROSSVOLT™ TinvPower™ GTO™ QS™ TinyPWM™ CTL™ IntelliMAX™ Quiet Series™ TinyWire™ Current Transfer Logic™ ISOPLANAR™ RapidConfigure™ **DEUXPEED**® Making Small Speakers Sound Louder TranSiC™ Dual Cool™ and Better™ TriFault Detect™ Saving our world, 1mW/W/kW at a time™ **EcoSPARK**[®] TRUECURRENT®* MegaBuck™ SignalWise™ EfficientMax™ MICROCOUPLER™ uSerDes™ SmartMax™ ESBC™ MicroFET™ N SMART START™ R MicroPak™ F Solutions for Your Success™ MicroPak2™ UHC Fairchild® SPM[®] MillerDrive™ Ultra FRFET™ Fairchild Semiconductor® STEAL THT MotionMax™ UniFET™ FACT Quiet Series™ SuperFET[®] MotionGrid® VCX™ FACT[®] FAST[®] SuperSOT™-3 MTi[®] VisualMax™ SuperSOT™-6 MTx® VoltagePlus™ FastvCore™ SuperSOT™-8 MVN® XS™ FFTBench™ SupreMOS[®] Xsens™ mWSaver® FPS™ SyncFET™ OptoHiT™ 仙童™ Sync-Lock™ OPTOLOGIC[®] * Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain
 life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 172