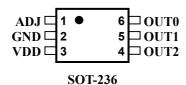
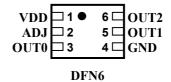


3-Channel Constant Current Driver

Product Description


The SCT2001 is designed to drive multiple LEDs in series from a high input voltage rail. The SCT2001 contains three output channels which are regulated to sink constant current for driving LEDs of large range V_F variations.


In the field of LEDs driving applications, users can simply adjust the output current from 10 mA to 45 mA through an external resistor R_{ADJ} to control the light intensity of LEDs. The SCT2001 guarantees to endure maximum DC 24V at each output port.

Features

- Three constant-current outputs rate at 24V
- Constant current range:10 45mA
- Wide operating supply input: 5 15V
- ±2%(typ) current matching between outputs
- ±4%(typ) current matching between ICs
- Smart dimming control via ADJ pin
- Low drop-out output 0.3V@20mA
- Excellent current regulation to load, supply voltage and temperature
- All output current are adjusted through one external resistor
- Hysteresis input for external resistor
- Built-in power on reset and thermal protection function
- Package: Small 2mmx2mm DFN and SOT-236
- Applications: Mini light bar, LED backlight, LED lamp

Pin Configurations

Terminal Description

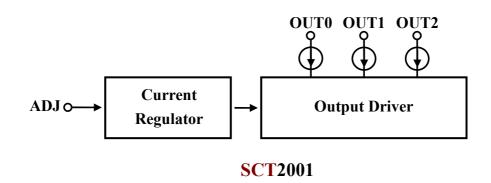
For SOT-236/DFN6

Pin	No.	Pin Name	Function	
1	2	ADJ	Input terminal used to set up all output current	
2	4	GND	Ground terminal	
3	1	VDD	Supply voltage terminal	
4	6	OUT2	Output terminal 2	
5	5	OUT1	Output terminal 1	
6	3	OUT0	Output terminal 0	

Ordering information

Part	Marking	Package	Unit per reel(pcs)
SCT2001AS1G	2001	Green SOT-236	3000
SCT2001ADNG	01A	Green DFN6	3000

StarChips Technology, Inc.


4F, No.5, Technology Rd., Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C.

Tel: +886-3-577-5767 Ext.555

Fax: +886-3-577-6575

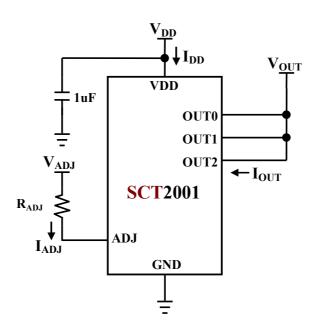
E-mail: service@starchips.com.tw

Block Diagram

Maximum Ratings $(T_A = 25^{\circ}C)$

Characteristic		Symbol	Rating	Unit
Supply voltage		V_{DD}	17	V
Input voltage		V_{ADJ}	-0.4 ~ V _{DD} +0.4	V
Output current		I _{OUT}	60	mA
Output voltage		V _{OUT}	24	V
Total GND terminals current	I _{GND}	200	mA	
Power dissipation(on PCB)	SOT-236	P_D	0.64	W
Fower dissipation(on FCB)	DFN6	r _D	2.16	VV
Thermal resistance(on PCB)	SOT-236	D	195	°C /W
Thermal resistance(on PCB)	$R_{TH(j-a)}$	58	C / V V	
Operating temperature		T _{OPR}	-40~+85	°C
Storage temperature		T _{STG}	-55~+150	°C

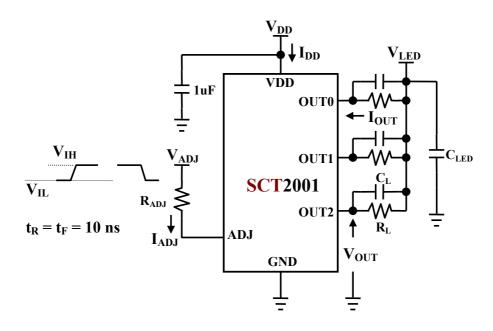
Recommended Operating Conditions (T_A= -40 to 85°C unless otherwise noted)

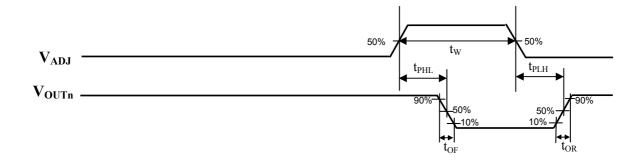

Characteristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage	V_{DD}	-	5	-	15	V
Output voltage	V	Output OFF	-	-	24	V
Output voltage	V _{OUT}	Output ON	-	1	4	V
Output current	I _{OUT}	DC test circuit	10	-	45	mA
Dimming pulse width	t _W	V _{DD} =5-15V	2	-	-	us
Dimming rise time	t _R	V _{DD} =5-15V	-	-	1	us
Dimming fall time	t _F	V _{DD} =5-15V	-	-	1	us

Electrical Characteristics (V_{DD}=5-15V, V_{ADJ}=5V, T_A=25°C unless otherwise specified)

Characteristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply current	I _{DD}	V _{DD} =5/15V	-	1/1.5	2	mA
AD Linnut voltage	V _{IH}	1	2.5	-	ı	V
ADJ input voltage	V _{IL}	1	ı	-	20	mV
ADJ input current	I _{ADJ}	R _{ADJ} =4.8K	-	1	-	mA
Output leakage	I _{OL}	V _{ADJ} =0V, V _{OUT} =24V,	-	-	0.5	uA
Output current	I _{OUT}	R _{ADJ} =4.8K	-	20	-	mA
Current channel skew*	dl _{OUT1}	V _{OUT} =1V,R _{ADJ} =4.8K	-	±2	±3	%
Current chip skew	dl _{OUT2}	V_{OUT} =1 V , R_{ADJ} =4.8 K	-	±4	±6	%
Line regulation I _{OUT} vs. V _{DD}	%/dV _{DD}	5V < V _{DD} < 15V, V _{OUT} >1 V, R _{ADJ} =4.8K	-	-	±1	%/V
Load regulation I _{OUT} vs. V _{OUT}	%/dV _{OUT}	$1V < V_{OUT} < 4V$, I_{OUT} =20mA, R_{ADJ} =4.8K	-	-	±1	%/V
Thermal shutdown	T _H	Junction Temperature	-	160	ı	°C
Theiliai shuldown	T _L	ounction remperature	-	110	-	°C

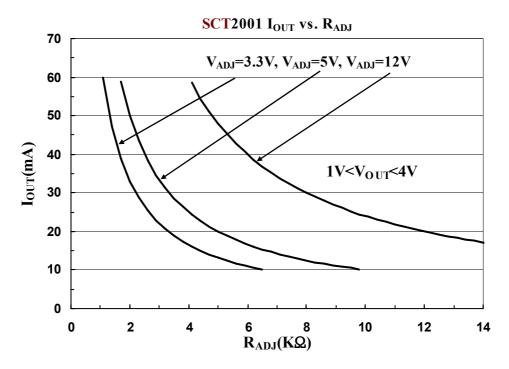
^{*} Skew=(I_{OUT} - I_{AVG})/ I_{AVG} , where I_{AVG} =(I_{max} + I_{min})/2


Test Circuit for Electrical Characteristics

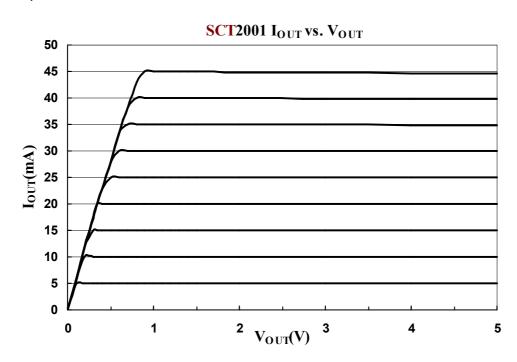

Switching Characteristics (V_{DD}=5-15V, T_A=25°C unless otherwise noted)

Charact	eristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Propagation delay time ("L" to "H")	V _{ADJ} – V _{OUTn}	t _{PLH}	V _{LED} = 5V	-	200	400	ns
Propagation delay time ("H" to "L")	V _{ADJ} - V _{OUTn}	t _{PHL}	$V_{IH} = 5V$ $V_{IL} = GND$ $R_{ADJ} = 4.8K\Omega$	-	200	400	ns
Pulse width	V_{ADJ}	t _w	$R_L = 180\Omega$ $C_L = 10pF$	2	-	-	us
Output rise time of I _{OUT}		t _{OR}	$C_{LED} = 47uF$	ı	200	400	ns
Output fall time	of I _{OUT}	t _{OF}		-	200	400	ns

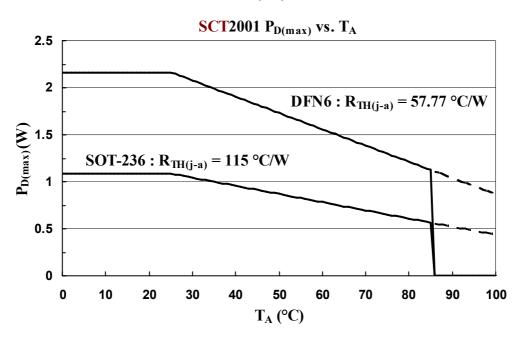
Test Circuit for Switching Characteristics



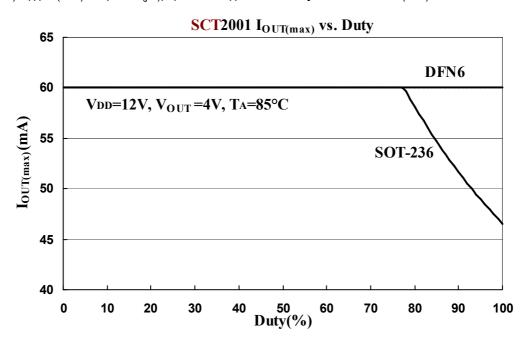
Timing Waveform


Adjusting Output Current

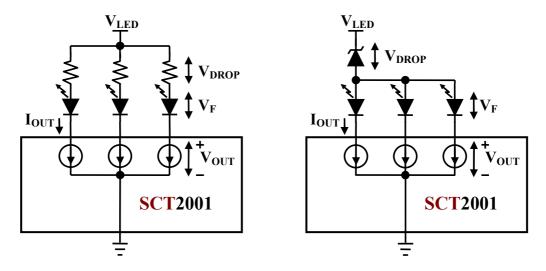
The output current (I_{OUT}) are set by one external resistor at pin ADJ. The relationship between I_{OUT} , resistance R_{ADJ} and reference voltage V_{ADJ} is shown as the following figure. V_{ADJ} connected to a stable reference voltage is suggested. Furthermore, I_{OUT} could be estimated by $\sim I_{OUT}(A) = 20*V_{ADJ} / (R_{ADJ}(\Omega) + 200)$ (chip skew < ±6%).


Output Characteristics

The current characteristic of output stage is flat. The output current can be kept constant regardless of the variations of LED forward voltage when $V_{OUT} > 1V$. The relationship between I_{OUT} and V_{OUT} is shown as below:


Power Dissipation

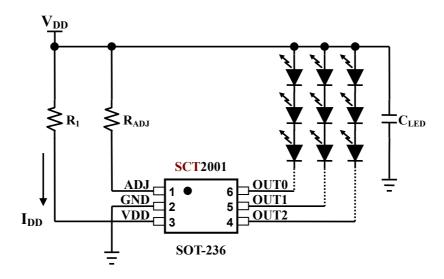
The power dissipation (P_D) of a semiconductor chip is limited by its package and ambient temperature. The maximum allowable power dissipation $P_{D(max)}$ is determined by $P_{D(max)}=(T_{J(max)}-T_A)/R_{TH(j-a)}$ where $T_{J(max)}$: maximum chip junction temperature, usually considered as 150°C, T_A : ambient temperature, $R_{TH(j-a)}$: thermal resistance of the package. The relationship between $P_{D(max)}$ and T_A is shown as the below figure:


Limitation on Maximum Output Current

The maximum output current vs. duty cycle is estimated by: $I_{OUT(max)}=(((T_{J(max)}-T_A)/R_{TH(j-a)})-(V_{DD}*I_{DD}))/V_{OUT}/Duty/N$ Where $T_{J(max)}=150$ °C, N=3(all ON)

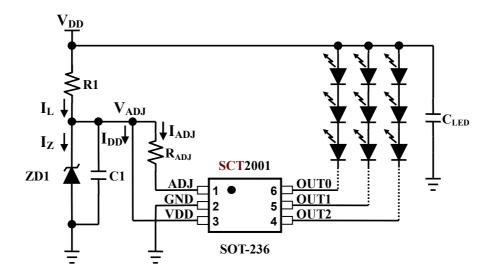
Load Supply Voltage (Viso)

The SCT2001 can be operated very well when V_{OUT} ranging from 1V to 4V. So it is recommended to use the lowest possible supply voltage or set a voltage reducer to reduce the V_{OUT} voltage and then reduce the power dissipation of the SCT2001. Follow the diagram instructions shown below to lower down the output voltage. This can be done by adding additional resistor or zener diode, thus V_{OUT} = V_{LED} - V_{DROP} - V_F .

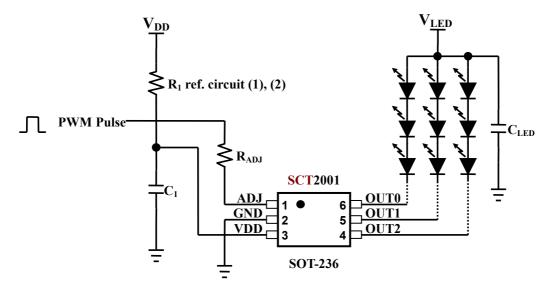


Over Temperature Shutdown

The SCT2001 contains thermal shutdown scheme to prevent damage from over heated. The internal thermal sensor turns off all outputs when the die temperature exceeds approximately +160°C. The outputs are enabled again when the die temperature drops below approximately +110°C.


Typical Application Circuits

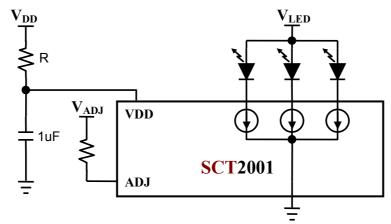
(1) Typical lighting application with e.g. V_{DD}=24V


The SCT2001 can operate well with wide supply input range: 5-15V, a lower supply input of SCT2001 is suggested to diminish the influence of power bouncing. If V_{DD} =24V, set $R_1 \sim (24V-5V)/I_{DD(max)}(2mA)$ =9.5K, a higher R_1 e.g. 10K is recommended.

(2) Typical lighting application (Zener diode as reference voltage)

Since output current of SCT2001 is V_{ADJ} dependent, to have a constant output with the most economic solution is to use zener diode as reference voltage V_{ADJ} . An adaptive value of $R_1 \sim (V_{DD}-V_Z)/I_L$ is suggested, where $I_L = I_Z + I_{DD} + I_{ADJ}$. If $I_Z \sim 1 \text{mA}$, $V_Z = 5.6 \text{V}$ is selected, and $V_{DD}=12 \text{V}$, $I_{OUT}=20 \text{mA}$ is intended current, typically $I_{ADJ} \sim I_{DD} \sim 1 \text{mA}$ in this case, thus $R_1 \sim (12 \text{V}-5.6 \text{V})/3 \text{mA} = 2.1 \text{K}$, a lower R_1 e.g. 2K is recommended.

(3) Lighting with dimming control



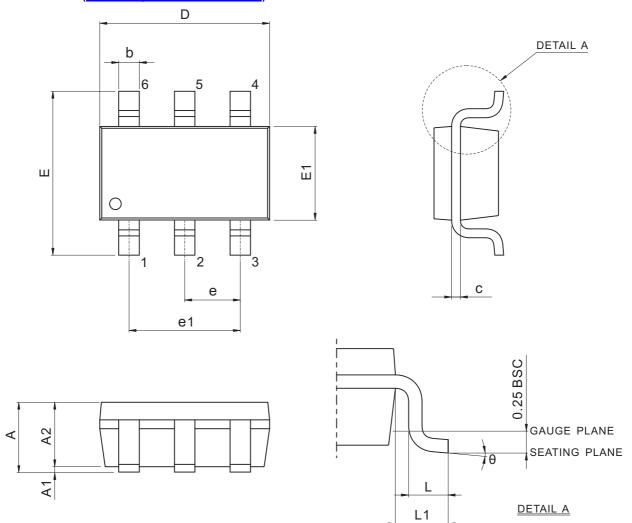
PCB Design Considerations

Use the following general guide-line when designing printed circuit boards (PCB):

Decoupling Capacitor

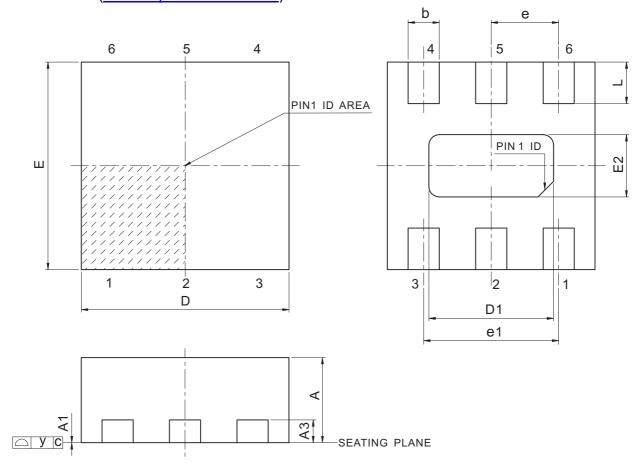
Place a decoupling capacitor e.g. 1uF between VDD and GND pins of the SCT2001. Locate the capacitor as close to the SCT2001 as possible. The necessary capacitance depends on the LED load current and dimming frequency.

External Resistor (R_{ADJ})


Locate the external resistor as close to the ADJ pin in as possible to avoid the noise influence.

Power and Ground

Maximizing the width and minimizing the length of V_{DD} and GND trace improve efficiency and lower ground bouncing by effect of reducing both power and ground parasitic resistance and inductance. A series resistor R(Ref. application circuit) in power input of the SCT2001 in conjunction with decoupling capacitor shunting the ICs is recommended. Separating and feeding the LED power from another stable supply terminal V_{LED} is strongly recommended.


Package Dimension

SOT-236(check up-to-date version)

Symbol	Dimension (mm)			Dimension (mil)			
Syllibol	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	-	-	1.45	-	-	57.1	
A1	0.00	-	0.15	0.0	-	5.9	
A2	0.90	1.15	1.30	35.4	45.3	51.2	
b	0.30	-	0.50	11.8	-	19.7	
С	0.08	-	0.22	3.2	-	8.7	
D		2.90 BSC			114.2 BSC		
Е		2.80 BSC			110.2 BSC		
E1		1.60 BSC			63.0 BSC		
е		0.95 BSC			37.4 BSC		
e1		1.90 BSC			74.8 BSC		
L	0.30	0.45	0.60	11.8	17.7	23.6	
L1		0.60 REF			23.6 REF		
θ	0°	4°	8°	0°	4°	8°	

DFN6-2x2(check up-to-date version)

Symbol		Dimension (mm)			Dimension (mil)			
Syllibol	Min.	Nom.	Max.	Min.	Nom.	Max.		
Α	0.70	0.75	0.80	27.6	29.5	31.5		
A1	0.00	0.02	0.05	0.0	0.8	2.0		
A3		0.20 REF			7.9 REF			
b	0.20	0.30	0.40	7.9	11.8	15.7		
D	1.9	2.00	2.10	74.8	78.7	82.7		
D1	0.00	1.20	1.25	0.0	47.2	49.2		
Е	1.9	2.00	2.10	74.8	78.7	82.7		
E2	0.00	0.60	0.65	0.0	23.6	25.6		
е		0.65 BSC			25.6 BSC			
e1		1.30 BSC			51.2 BSC			
L		0.40 REF			15.7 REF			
у	-	-	0.08	_	-	3.1		

Revision History

Data Sheet Version	Remark(<u>check up-to-date version</u>)
V02_02	Application circuits descriptions added

Information provided by StarChips Technology is believed to be accurate and reliable. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Starchips can not assume responsibility and any problem raising out of the use of the circuits. Starchips reserves the right to change product specification without prior notice.

StarChips Technology, Inc. ______ www.starchips.com.tw